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NOMENCLATURE

A = disturbance amplitude

A o = initial amplitude or amplitude at most upstream location

f = frequency, Hz

M =Mach number

N = integrated growth rate

Po = stagnation pressure, psia

q' = an arbitrary fluctuating quantity

= eigenfunction of q'

Re,. = unit Reynolds number, per foot

R w = resistance of the hot-wire sensing element

Rw,adiabati c = resistance of the hot-wire sensing element without heating

S = distance along the body of the cone surface, in.

t = time,S

To = stagnation temperature, °R

Vrh = voltage input to CVA to set wire voltage

Vs,RM S = RMS voltage of CVA output

Vs,mean = mean voltage of CVA output

x = distance along the axis on the cone, in.

y = distance normal to the x-axis

-¢xi = spatial growth rate, 1/in.

= boundary layer thickness, in.

= frequency, rad/s



CHAPTER 1

INTRODUCTION

1.1 Purpose of the Present Research

The design of high-speed aircraft is linked to the knowledge of high-speed

boundary-layer stability. For an aircraft to withstand the aerodynamic heating loads of

hypersonic flight, it must employ active cooling and/or be constructed of expensive

composite materials that retain their strength at elevated temperatures. The designer must

confidently estimate the heating loads in order to select an appropriate, cost-effective

construction material and/or cooling system. Heating loads, however, depend on whether

the boundary layer is turbulent or laminar. In addition to the aerodynamic heating problem,

there are also cases where the high-speed flow must be turbulent for thorough fuel-air

mixing prior to combustion. 1 Furthermore, the aerodynamic performance of aircraft,

whether high- or low-speed, depends on the nature of the boundary layer over the aircraft.

Consequently, the stability and transition of high-speed flow is a crucial factor in the design

of high-speed aircraft.

Since experimental data are fundamental to the understanding of boundary-layer

stability, the purpose of this research was to conduct a parametric investigation of the

stability of the 91-6 cone boundary layer, with variable wall temperature, in Mach 6 quiet

flow and compare the results with theoretical predictions. This comparison between

experiment and theory can reveal the extent of linear stability theory as a valid predictor of

instability phenomena in hypersonic flows. Moreover, as the boundary layer becomes



turbulent,new, valuable information related to nonlinear instability can be obtained for

future transition-modeling codes.

1.2 Linear Stability Theory

The transition zone in a boundary layer is bordered on the upstream end by

predictable laminar flow and on the downstream end by unpredictable turbulent flow.

Within this zone, infinitesimal disturbance waves experience exponential growth and decay

in the "linear" region as Re increases. Once the instability waves grow to a finite

amplitude, the transition process enters a "nonlinear" region where nonlinear events, such

as harmonic generation and mean-flow distortion, occur. 2 The distortion of the mean flow

further destabilizes the flow to opportunistic secondary instabilities.3, 4 The multiplicity of

growing and interacting flow disturbances in the nonlinear region results in a coherent,

three-dimensional fluctuating flowfield that ultimately breaks down into turbulence and

signifies the end of the transition zone. 5 It should be noted that the linear region is usually

much longer in extent than the nonlinear region. 6 The foregoing description of the

transition zone does not apply universally, but is the most common phenomenology of

transition.

Linear stability theory (LST)7,8 describes a mathematical approach used to predict

the growth and decay of spatially and temporally periodic disturbances in a boundary layer

in the linear region of the transition zone. To formulate the stability equations, the

governing flow equations are identified and each flow variable is assumed to be composed

of mean and fluctuating components. These quantities are substituted into the governing

equations and the resulting equations are linearized. The original mean-flow equations are

then subtracted from the linearized equations and a parallel flow assumption is imposed;

i.e., the prof'de of the mean flow quantities depends only on the normal distance from the

wall boundary. A functional form of the oscillatory disturbances is then assumed:

q'= _(y) exp[i(ax + 13z- cot)] (Eqn. 1.1)



where_(y) is theeigenfunctionthatdefinestheamplitudeprofileandexp[i(txx+ 13z- cot)]

describesthefrequencyandspatialorientationof thedisturbance.In orderto evaluatethe

stability of thisdisturbance,assumptionsmustbemaderegardingits growth(eitherspatial

or temporal)andorientationangle. If thespatialgrowthof atwo-dimensionaldisturbance

propagatingin thex-direction is to be investigated,thenthefrequency,co,is real; thex-

wavenumber, o_,is complex; and the z-wavenumber,13,is zero. The resulting flow

disturbancewouldhavethefollowingform:

q'= t](y) exp[i(arx - tot)] exp(-ctix) (Eqn.l.2)

where exp(-aix) defines the spatial growth of the disturbance. Clearly, when -(Z i is

positive (a i is negative), the disturbance will grow at an exponential rate in the x-direction.

The primary objective of linear stability theory is to determine the growth rate of a given

disturbance frequency at a specific x location.

For the case of incompressible flow, there are inviscid, viscous, and centripetal

instability mechanisms that can lead to the growth of flow disturbances. Once viscous

forces are neglected, the second-order Rayleigh equation governs the flow stability. In

order for a disturbance to grow inviscidly, a point of inflection must exist in the velocity

profile and there must also be some location in the boundary layer where the following

inequality applies: U"(U-Us)<0. For this inequality, U" is the second derivative of the

velocity and U s is the magnitude of the velocity at the inflection point. There are a number

of parallel shear flows where this "inviscid instability" or "Rayleigh instability" mechanism

is applicable including Blasius flows with adverse pressure gradients, wakes, jets, and

mixing layers. The velocity profiles for these flows are shown in Fig. 1.1 and the

existence of inflection point(s) is clear in each case. In the absence of an inflection point in

the boundary-layer velocity profile, such as Blasius flow or plane Poiseuille flow (see Fig.

1.1), the effects of viscosity must be included to explain the instability that develops in

these flows. Upon including the viscous terms, the fourth-order Orr-Sommerfeld stability
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equationis found to govern the stability of the flow. In the case of the inviscid instability

mechanism, viscosity acts to stabilize the flow; however, in the case of flows without an

inflection point, viscosity acts to destabilize the flow over a finite Re range. The

disturbances that grow in Blasius flow due to the destabilizing effect of viscosity are

known as Tollmien-Schlichting waves. As Re increases, viscous forces decrease and the

flow tends toward its stability as predicted using the inviscid theory. Since the viscosity of

a fluid is dependent upon temperature, the destabilizing effects of viscosity will decrease as

the temperature of a gas decreases (the opposite will happen for a liquid), thereby

decreasing the viscosity of the gas. This can occur if the wall temperature is decreased

through an active cooling process. Another type of instability mechanism is introduced if

the flow boundaries include curved surfaces, as in the case of Gtrfler, Taylor, and Dean

flows (see Fig. 1.1). In these cases, when the flow reacts to the centripetal force (induced

by the surface curvature) by forcing high-momentum fluid into low-momentum fluid; e.g.,

the GSrtler case shown in Fig. 1.1, the flow is destabilized and vortices develop.

However, when low-momentum fluid is forced into high-momentum fluid; e,g., when the

inner cylinder of the Taylor flow is at rest and the outer is rotating, the flow is stable.

Hence, there exist a variety of instability mechanisms that may lead to the growth of

disturbances in the transition zone of an incompressible flow depending upon the curvature

of the velocity prof'tle, the curvature of the wall boundaries, and the viscous forces.

For the flow of interest in the present research, the stability equations must be

derived from the Navier-Stokes equations governing the flow of a viscous, compressible

fluid. The detailed derivation of the eighth-order system of compressible stability equations

and the bounded boundary conditions will not be repeated here but can be found in Ref. 7

and also in References 9 and 10.

The highlights of the compressible stability equations using only the inviscid theory

will now be summarized. From Lees and Lin 11, the importance of the "generalized
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inflection point"

disturbances.Thisgeneralizedinflectionpointis

was shown as a sufficient condition for the existence of unstable

(Eqn.l.3)

andif density is held constant,the incompressibleinflection point, U"=0, is recovered.

This generalizedinflection point plays the samerole in compressibleflow asdoesthe

velocity inflection point in incompressibleflow. From the work of Mack7, a critical

observationregardingthe importanceof the "relative Mach number," lVl, as defined

below5,wasmade:

1QI= M _c (Eqn.l.4)
a

In Eqn.l.4, "M" is the local Mach number, "c" is the phase velocity of the disturbance

which is equal to co/or r for spatial stability theory, and "a" is the local speed of sound.

Disturbances in the compressible boundary layer are classified depending on the magnitude

of 1VI2 :

/Vl2 < 1 Subsonic Disturbance (Eqn. 1.5a)

lvl 2 = 1 Sonic Disturbance (Eqn.l.5b)

1VI2 > 1 Supersonic Disturbance (Eqn. 1.5c)

Mack was the first to discover that the mathematical nature of the stability equations for a

compressible flow with a locally supersonic disturbance changes from elliptic (if the proper

assumptions are made), with a unique wavenumber solution, to hyperbolic, with infinitely

many wavenumber solutions. The additional solutions have come to be known as higher

modes or "Mack" modes in his honor, and they begin to appear when the Mach number

exceeds 2.2 in the case of fiat-plate flow over an adiabatic wall. There are no analogous

Mack modes in incompressible flow since there are no locally supersonic disturbances.



Mack made many important findings related to his inviscid investigation of these

higher modes. The first of the additional modes, or the second mode, was found to be the

most unstable of the additional higher modes for all Mach numbers. The wavenumber was

found to be inversely proportional to the thickness of the relative supersonic layer; i.e.,

there was a mathematical link between the thickness of the boundary layer and the

frequency of the higher-mode disturbances. Moreover, there was evidence that the

maximum amplification rate was also inversely proportional to boundary-layer thickness.

Hence, any parameter that alters the boundary-layer thickness will also affect the frequency

and the growth rate of second-mode disturbances. The most unstable second mode was

always a two-dimensional wave for all Mach numbers; however, as the freestream

exceeded the sonic value, the most unstable first mode was an oblique, three-dimensional

wave with an inclination angle; e.g., a wave of 60 ° at M=2. For the flow over an insulated

wall, the first mode was the most unstable disturbance up to M=3.8, after which the second

mode became the most unstable. Also, second-mode disturbances tended to have much

higher frequencies than the ftrst mode.

What may arguably be considered the most important of Mack's findings was

related to the effect of wall cooling. Before Mack's discovery, it had been predicted that

wall cooling could completely stabilize the flow of a compressible boundary layer 12 for

Mach numbers between 1 and 9. Mack showed that the first mode could be completely

stabilized (with oblique orientations requiring greater cooling rates), but the effect of wall

cooling on the second mode was much different. Since the second mode is generated by an

inviscid instability mechanism, wall cooling cannot eliminate the presence of this mode.

Unlike the f'trst mode, the second mode increases in maximum amplification rate and wave

number with wall cooling. This increase in second-mode instability was due to the increase

in the region of relative supersonic mean flow. In essence, the second mode was

destabilized by wall cooling and the most unstable second mode was still a two-

dimensional wave. Mack showed conclusively that due to the presence of the second and
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higher modes, wall cooling is not a viable method of achieving a stable, compressible

boundary layer.

Mack also investigated compressible flow stability when the viscous terms were not

neglected. He found that viscosity always had a stabilizing effect on the second mode for

all Re and Math numbers, with finite Re second-mode disturbances having lower

amplification rates than predicted by inviscid theory. This is the same trend that exists in

incompressible flows when the effects of viscosity are included in the analysis of an

inviscid instability. As M increased, the viscous instability effect was seen to decrease and

eventually disappear. Two-dimensional second-mode disturbances were still more unstable

than oblique second-mode disturbances at finite Re. When wall cooling was included with

the viscous analysis for the second mode, the inviscid theory trends persisted; i.e., the

boundary-layer reduction due to the cooling generated an increase in disturbance frequency.

The physical manifestation of the fast- and second-mode disturbances over a fiat

plate will now be described. As shown in the typical eigenfunctions of Ref. 4, the Mach

number plays a crucial role in defining the character of the first mode. At subsonic Mach

numbers, there is no second mode, due to the lack of supersonic disturbances, and the

dominant first mode is a relatively low frequency velocity fluctuation with a broad

amplitude distribution throughout the boundary layer. As the Mach number increases, the

velocity eigenfunction does not change appreciably in either amplitude or extent; however,

a temperature fluctuation develops as the region of relative supersonic mean flow increases.

At M=4.5, this temperature fluctuation has a maximum amplitude that is 15 times that of the

velocity fluctuation, but the disturbance is confined to a region near the boundary-layer

edge. The second mode is primarily a high-frequency temperature and density 13

fluctuation also confined to a region near the boundary-layer edge with relatively

insignificant velocity contributions. Thus, once the Mach number increases beyond four,

the first- and second-mode flow disturbances are primarily temperature fluctuations with

maximum amplitudes near the boundary-layer edge.



Theresultsof Mack'sLST analysis highlight aspects of compressible flow stability

germane to the present research. Unlike an incompressible flow, both low-frequency first-

mode and high-frequency second-mode disturbances can coexist in the compressible

boundary layer. In addition, the maximum amplitude of the temperature disturbances

associated with both modes at hypersonic Math numbers will occur near the boundary-

layer edge. Wall cooling will stabilize the fast mode, but destabilize the second mode due

primarily to the decrease in boundary-layer thickness.

1.3 The 91-6 Cone and its Predicted Boundary-Layer Stability

Due to the physical constraints of the M6NTC quiet wind tunnel used in the present

research, a flared-cone model geometry was used that would produce measurable

disturbance growth in the boundary layer over a short length. The M6NTC exit diameter is

7.5 in. and the usable quiet core length is less than 25 in. long. The slow growth of

disturbances in a straight-cone boundary layer necessitated the addition of a flare on the

cone model to produce an adverse pressure gradient. With this flare, second-mode cone

model disturbances grew more quickly to measurable levels and transition was detectable

on the cone surface. The main effect of the flare (for the second mode) was to maintain an

approximately constant boundary-layer thickness over the flare region thereby allowing a

constant frequency second-mode disturbance to grow. The final geometry of the cone

model with flared afterbody used in this research is shown in Fig. 1.2. The nomenclature

"91-6" defines a flare radius of 91 in. and a straight cone section 6 in. long upstream of the

flare.

A thorough numerical investigation of various cone geometries was conducted by

Balakumar and Malik 14 using the quasi-parallel, compressible linear stability eMalik code, 15

which documented the parametric effects of the pressure gradient and wall cooling on the

stability of the flow over the 91-6 cone. The mean-flow parameters of interest to the

present research are To=810*R, Po=130 psia and M=6. For the viscous first-mode
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disturbances,themostunstablefrequencywas70kHzandgrewto N=4 at x=16in. for the

straight-conecase. The addition of the adversepressuregradient (due to the flare)

introducedaninviscid instabilitymechanism and increased the growth of the fast mode to

N=5.3. Wall cooling reduced the viscous effects (via a reduction in viscosity with reduced

temperature) and removed the inflectional instability thereby stabilizing the Fast mode and

reducing N. For the inviscidly unstable second mode, the most unstable straight-cone

frequency was 210kHz, which grew to N=4.4 at x=16 in. This growth is comparable to

the first mode case, but the frequency has tripled as is characteristic of the second mode.

The addition of the flare shifted the most unstable second-mode frequency to 270kHz and

the growth increased to N=10.7. This occurred because the boundary-layer thickness was

held constant in the flared region thereby allowing a constant-frequency second mode to

grow. For comparison, disturbances are usually detectable experimentally after N=5 and

flow transition occurs near N=10.16-18 Wall cooling shifted the second-mode frequency

even higher -- to 310kHz -- and the disturbance growth dramatically increased to N=15.8.

The increase in frequency, as well as the increase in growth in the cooled wall case, can be

attributed to the enhanced region of relative supersonic mean flow. As the trends of Mack

showed, the decrease in boundary-layer thickness accompanying the introduction of both

the flare and wall cooling increased the second-mode frequency and growth.

Expected experimental results are clear from the numerical investigation. 14 For the

adiabatic-wall case, the dominant flow-disturbance frequency should be 270kHz since

maximum growth is observed at this second-mode frequency. There should be little or no

shifting of the dominant second-mode frequency since the boundary layer is approximately

constant. Once cooling is applied, there should be a detectable frequency increase to

310kHz and a substantial increase in disturbance growth. The accompanying decrease in

transition Re should be detectable. Since the first-mode disturbances do not grow

significantly above the N=5 level, it was questionable whether their detection would be

possible.
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1.4 Comparison of LST and Experimental Data

Compressible LST has been used to predict the growth rates of various frequencies

at select Re for a variety of boundary layers. To compare with the LST analysis,

experimental amplitudes, A, for the same frequency may be reduced using the following

relationship:

1 dA
_ -- --0_ i
A dx

or the mathematical equivalent:

d
-;---(In A) = -¢x,
QX

(Eqn. 1.6a)

(Eqn.l.6b)

Itisacceptedpracticein stabilityexperimentstoacquirethisamplitudedataintheregionof

maximum RMS energy for each x location. For the present research, the flow is

hypersonicand thismaximum isexpected tobe locatedneartheedge of theboundary layer.

Since LST predictsgrowth ratesand experimentaldata yieldsamplitudes,the integrated

growth rate or N-factor can be calculatedin order to directlycompare experimental

amplitudesto theory.The N-factorisdef'medas:

It

I -oq (x) dx (Eqn. 1.7)N

It o

The N-factor for a specific frequency is integrated from an upstream x o location where the

disturbance amplitude is A o. This xo location is typically the first- or second-mode neutral

point on the stability diagram. To compare with the experimental amplitudes, A, the

following relation is used:

A (F_qn.l.8)
A,

where N is the value found using Eqn.l.7. Eqn.l.8 can also be expressed as:

In (A) -ln(Ao) = N (Eqn.l.9)
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which is similar to the"frequencyresponsecurve"usedby Mack.2 If the theoretical N-

factor curves have been calculated for the flow in question, Eqn. 1.9 indicates that the

natural logarithm of the experimental amplitudes may be compared with the LST

predictions by shifting the experimental data an amount, ln(Ao), and comparing the local

slopes. 19

The comparison between LST predictions and experimental data is straightforward.

To perform the appropriate comparison, either set of raw results must be manipulated. To

compare the LST growth rate directly with experimental data, the derivative of the

experimental amplitudes must be taken using Eqn.l.6. To compare experimental

amplitudes directly with LST using Eqn. 1.9, the LST growth rate must be integrated using

Eqn. 1.7. There is a fundamental question as to which procedure introduces more error into

the comparison. This issue will be further addressed in later chapters.

1.5 Quiet Tunnels and the M6NTC

The overriding feature defining the uniqueness of the present research is the use of

a quiet tunnel environment. Whereas numerical models assume an ideal, noiseless flow

(except for computational roundoff errors), experimental high-speed flows generally have a

measurable freestream disturbance field at high Re**. 20-23 Due to wind-tunnel design

variations, resulting disturbance fields interact with boundary layers differently and

produce conflicting results for similar models. For example, Pate and Schueler 24 and

Pate 25 found unexpected variations in transition Reynolds number for cone and flat plate

models for 3<M<8 in different wind tunnels. This result confirmed the undesirable effect

of acoustic freestream disturbances in stability and transition research and helped establish

the need for low-disturbance, high-speed, "quiet" tunnels.

High-speed wind tunnels can generate a variety of unsteady freestream disturbances

that are classically characterized as vorticity, entropy, and sound modes 26 generated in the

settling chamber or nozzle.20, 21 Vorticity mode disturbances, i.e. turbulence, are generally
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negligible for hypersonic nozzles due to the large flow expansion from the settling chamber

to the test section. 22,27 Entropy mode disturbances; i.e., temperature "spottiness," are

negligible ff the heated flow has been thoroughly mixed prior to entering the test section. 21

The sound mode is the significant source of high-speed noise and has many sources,

including Mach wave radiation from turbulent boundary layers, "shivering" Math waves

from surface irregularities, and sound wave propagation from the settling chamber.2O, 21 In

general, the radiant sound mode dominates the freestream disturbance field for high-speed

flows and is primarily produced by acoustic disturbances radiating from the turbulent

tunnel-wall boundary layer. 22

Quiet-tunnel technology, developed and implemented at NASA-Langley Research

Center, maximizes the region of laminar flow over the nozzle wall, thereby delaying the

onset of turbulent nozzle-wall boundary layers and the attendant radiated sound. 28-30

Certain elements are unique to a typical quiet tunnel, as shown in Fig. 1.3. They are: 1) a

suction slot upstream of the nozzle throat to bleed off the turbulent settling chamber

boundary layer, 31 2) a highly polished nozzle throat to minimize the transition-promoting

effects of surface roughness,32 3) a straight contour just downstream of the nozzle throat to

delay the development of Gtrtler vortices, 33 and 4) high-density porous plates in the

settling chamber to attenuate upstream piping/valve noise. Transition research conducted in

quiet tunnel environments shows transition trends closer to those obtained in free-flight

than do data from conventional tunnels. 28 These data conf'trm the effectiveness of quiet

tunnels for high-speed stability and transition research and the applicability to the present

research.

As part of NASA Langley Research Center's program for hypersonic instability and

transition research, a quiet Math 6 facility was developed. This involved retrofitting a new

quiet nozzle to the Langley Nozzle Test Chamber facility and modifying the settling

chamber. The modified facility is commonly known as the Mach 6 Nozzle Test Chamber

Facility or M6NTC. The nozzle has been thoroughly calibrated in support of the present
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research34 and was found to be appropriatefor hypersonicboundary-layerstability

investigations.

1.6 Previous Experimentation

A major objective of transition-zone investigations is understanding flow transition

mechanisms and their accurate modeling. Although there have been numerous transition

experiments conducted (with and without wall cooling effects) where the "transition point"

was identified under specific conditions, this information was very difficult to generalize

and to apply to other flow situations, because there was little or no information about the

nature of the flow disturbance responsible for transition.35-68 Only stability experiments

using traditional experimental techniques; e.g., hot-wire anemometry, give the necessary

information for a detailed description of the transition process that is conducive to

numerical modeling.

Despite their sparsity in the literature, there have been a number of significant high-

speed stability experiments conducted in recent years since Mack's discovery of the higher

disturbance modes. The motivation for nearly all boundary-layer stability experiments,

regardless of flow regime, stems from the breakthrough experiments of Schubaurer and

Skramstad 69 fifty years ago that showed the validity of the linear stability assumptions in

incompressible fiat-plate flow. Prior to the discovery of the higher modes, Demetriades

conducted the first hypersonic stability experiments.70, 71 Kendall was the first to

experimentally verify the existence of dominant disturbances in a hypersonic boundary

layer 72 and to identify the second mode. 73 Demetriades conducted further experiments that

verified Mack's predictions relating to wall cooling.74,75 The work of Stetson, et al.,76-86

throughout the past decade provides the most complete description of parametric effects on

the stability of high-speed flow. Overall, the results of Stetson's studies agreed with the

trends found in LST predictions for frequency and growth; however, these tests were

conducted in a conventional high-speed tunnel with typical acoustic-radiation noise
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interference.Upon examining these data, it was found that the flow was transitioning at a

relatively low N~4 value based on the saturation of the second-mode disturbances. 19 Since

the emphasis in the previous experiments was on the linear region, possible secondary

instabilities and the nonlinear breakdown of the two-dimensional second-mode

disturbances were not investigated. Numerical investigations of secondary instability and

the nonlinear region continue3,13,87-89 - often using the parabolized stability equation

(PSE) method - so the "great need for additional experimentation "13 and "particularly

hypersonic quiet tunnel stability experiments"86 is understandable. In the area of high-

speed stability experimentation, the present research represents a logical and anticipated

step - stability experiments in a quiet-flow environment where the linear as well as the

nonlinear regions may be investigated. Prior to the present research, the NASA-Langley

quiet tunnels have been used primarily for transition experiments. 90

1.7 Research Objectives

Intermediate tasks accomplished before initiating experiments included: conducting

a literature search, designing a cooled-cone model with a cooling system, designing a

traversing system with interchangeable hot-wire probes, designing a contact system, and

evaluating the performance of the M6NTC.

The research objectives for the present experiment are as follows:

1) Use constant-voltage anemometry to investigate the boundary layer disturbances over

the 91-6 cone under adiabatic and wall-cooling conditions;

2) Identify the most unstable frequencies, compare their growth with the LST predictions

and reconcile any differences;

3) Identify any new stability phenomena associated with the quiet-flow environment;

4) Investigate the nonlinear region of the transition zone and identify possible transition

mechanisms; and

5) Document the sensitivity of the experimental results to experimental parameters.
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CHAPTER 2

EXPERIMENTAL APPARATUS

2.1 Cone Model and Coolant System

As shown in Fig. 1.1, the cone has a straight 5" angle for the first 6 in. which

tangentially merges into a flared region of radius 91.443 inches for the remaining 12 in. of

its length. The total length of the cone is 18.0 in. and the base diameter is 4.768 in. As

previously explained, the flare was added to the cone to promote high disturbance growth

rates and to ensure that the end of the transition zone would be detectable on the cone.

The cone has a waU thickness of 0.080 in. and is instrumented with 51 T-type

thermocouples along one ray of the cone and 30 pressure ports of diameter 0.020 in.

located 180" from the thermocouple ray. All flow data were acquired in the plane of the

thermocouples so that direct comparisons with wall temperature could be made.

The cone had a variety of surface imperfections. There was a notable

manufacturing flaw in the symmetry of the cone - a 0.001-in. reduction in radius exists on

the thermocouple side. This error in contour is, however, smooth and parallel to the flow

direction. The tip-frustum interface produces a 0.0005 in. rearward-facing step relative to

the flow direction. The cone tip is 1.5 in. long with a tip radius of approximately 0.0025

in. The cone had an rms finish of between 4 and 8 microinches; however, the sealant at the

tip-frustum interface leaked during testing and produced approximately 10 randomly spaced

roughness sites between x=l.5 in. and x=3 in. The height of these roughnesses appeared

to be on the order of the tip-frustum interface height. Since the model was not moved

during testing, these roughness sites were likely present for all tests; however, LST
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calculations predict that second mode frequencies arc damped in this roughness region for

both the adiabatic- and cooled-wall cases.

The cone is equipped with internal passages for active surface cooling, as depicted

in Fig. 2.1. As shown, the frustum acts as a parallel-flow heat exchanger, while the tip is

not cooled. In the cooling mode, an FTS Systems model RC211 Recirculating Cooler

pumped Flourinen FC-72 through insulated stainless steel tubing to the cone and back to

the cooler for heat removal. For steady-state operation of the cooler at tunnel flow

conditions, the cooler set points were -15"C (465°R) for maximum cooling and 25"C

(537"R) for minimum cooling. Once the set point was reached during testing, the fluid

temperature was held to within :i:l "C. Note that the LST calculations assumed a wall

temperature of 420"R for the cooled case calculations, which is 10% lower than the lowest

wall temperature achievable with the present cooling system. The sensitivity of the flow

disturbances to the wall temperature was addressed in this research.

2.2 Mach 6 Nozzle Test Chamber (M6NTC)

The operating parameters of the M6NTC were selected to match those of the LST

results at the highest practical Re**. For all tests, the tunnel operating parameters were held

constant at To=810*R and Po=130 psia with experimental errors of :_.3"R and +7 psi,

respectively. The variation of centerline Mach number down the tunnel measured from a

previous investigation34 at the same stagnation conditions is presented in Fig. 2.2 and

shows a mean Mach number of 5.91 "1-1.4%, which is less than the M of 6.0 used in the

LST calculations. Given the M, To and Po presented, the resulting Re** is 2.85x106/ft.

The quiet core length is 25.3 in. at this Re** and begins 20.76 in. downstream of the nozzle

throat. 34 For reference purposes, the throat-to-exit length of the nozzle is 39.76 in. In

Fig. 2.3, the quiet core of the empty nozzle at Re**=2.85x106/ft. is presented with the cone

prof'fle in its test orientation. It can be seen that there is a significant region where the flow
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overtheconeisexpectedto bequiet. Theactualnoiselevelabovetheboundarylayerwas

investigatedandis presentedherein.

Model position in the M6NTC was determinedby trial and error in order to

maximizerun time. Thefinal positionof theconeresultedin 3 in. of themodelextending

from thenozzleexit. With the model in this position, the tunnel could run in a nearly

indefinitesteady-state mode at the desired stagnation temperature and pressure.

The orientation of the cone with respect to the mean flow was of great concern.

Since the pressure system was not available at the time of final cone positioning, a

mechanical approach was utilized. Specifically, the cone was aligned with the outer edge

of the nozzle using calipers and a straight edge so that the cone was at zero degrees yaw

with an error of _-4-0.1degrees. Using an inclinometer, the cone was set at zero degrees

angle-of-attack with an error of_-+O.1 degrees.

It is significant to note that the M6NTC used in performing the present research no

longer exists. The tunnel was decommissioned and dismantled within weeks of the

completion of these experiments.

2.3 Hot-Wire Probes and Constant-Voltage Anemometer

To satisfy the requirements of this experiment, the author designed and built unique

hot-wire probes incorporating a contact sensor as shown in Fig. 2.4. Since LST

calculations predicted a boundary-layer thickness of less than 0.040 in. for the cooled case

and the majority of the cone was inside the nozzle, accurate determination of the position of

the probe relative to the cone wall, without optical access, was fundamental to the success

of the experiment. To ascertain when the probe contacted the wall, a contact circuit was

designed (Fig. 2.5) that produced a high TTL output when mechanical (and hence

electrical) contact between the cone wall and contact sensor was made. All traversing

motions were then made relative to this wall position. As seen in Fig. 2.4, the contact

sensor was positioned far downstream of the hot-wire to minimize flow interference.
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Omegabond200wasselected as the high-temperature epoxy for securing the wire supports

and contact sensor to the probe body. This epoxy proved to be rigid and durable.

The shape of the wire support tips was another unique feature of the probes. The

hot-wire was 0.0001 in. dia. platinum-rhodium (10%) wire with a length-to-diameter

aspect ratio of 150. This wire material and aspect ratio have been used successfully in

recent high-speed stability research 86 despite its lack of strength compared to tungsten 91

and the potential for end conduction effects. 92-94 To avoid unsteady strain gaging; i.e.

spurious frequencies in the time-trace data due to wire vibrations, a hot wire in high-speed

flow must have some slack. 95,96 To obtain the slack, or curvature, seen in Fig. 2.4, the

wire support tips were angled and the hot wire was soldered, using high-temperature

solder, to the center of the support tips. This unique approach resulted in hot-wire probes

with negligible unsteady strain gaging.

There were a total of 6 hot-wire probes built for this experiment that were repaired a

total of 22 times due to wire breakage. During testing, there was a recurring failure mode

of the wires - the resistance of the wire would steadily increase over time and the wire

would ultimately break in the middle. Since there was no visible evidence of oxidation on

the broken wires, it is thought that the wires were plastically deforming which resulted in a

reduced diameter and hence higher resistances. The wire breakage is thought to be due to

mechanical failure as each wire was stressed beyond its ultimate strength.

The constant-voltage anemometer (CVA) used in the present research is a recent

invention under development by Tao Systems. 97-100 While the CVA is usually operated at

constant wire voltage, the author has chosen to operate the CVA in a constant overheat

mode with a resistance ratio (Rw/Rw,adiabatic) of 1.5 to minimize possible sensitivity

variations due to overheat drift. The overriding reason for using the CVA was its low

noise level while operating in the M6NTC environment. Constant-temperature anemometry

and constant-current anemometry systems have been used previously in the M6NTC, but

neither have the low noise level and hence, high signal-to-noise level, of the CVA. The
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CVA usedin the presentstudywas a Tao Systemsprototype Model CVA400 with a

bandwidthof 400kHz, which is well-suited for detectingthe highestpredictedsecond

modefrequenciesof 310kHz. The sensitivity of the CVA (in the constantvoltagevs.

constantoverheatmodes)to flow disturbancesis addressedherein.

In Fig. 2.6,thetypical no-flow noisespectraof theCVA is comparedto atypical

hot-wire spectra with the wire located in a low-disturbance region of the adiabatic-cone

boundary layer. This figure illustrates the lack of unsteady strain gaging typical of the hot-

wire probes used. Unsteady strain gaging would be seen as large amplitude spikes usually

above 500 kHz. Noting that the frequency amplitudes are on a logarithmic scale, the roll-

off of the no-flow noise output near 400 kHz is evident. This def'mes the bandwidth of the

CVA. It is also worthy to note that the lower frequencies (e.g., 15 kHz) have lower

absolute noise levels than the second mode frequencies (e.g., 310 kHz) indicating that

these lower frequencies can be detected before the second mode frequencies.

No attempt to calibrate the hot wires was made for a number of reasons. First,

static calibration would have greatly increased the experimentation time beyond the

scheduled decommissioning date of the M6NTC. Secondly, the wire failure rate showed

that a calibrated wire would be useful for only a limited time. Thirdly, the range of flow

conditions available for calibration purposes was limited, which meant that it would not be

possible to quantify most of the boundary-layer mean flow. In addition, the static response

of a hot-wire in high-speed flow using CVA has not yet been studied rigorously. The

author is aware of research presently being conducted at Syracuse University to analyze

and experimentally verify the static and dynamic response of a constant-voltage

anemometer in high-speed flow. Finally, and most importantly, the highest priority of the

present research was to determine the stability of the flow and uncalibrated data were

sufficient to glean the dominant frequencies and their growth.
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2.4 Traversing System

A schematic of the conical model in the M6NTC is presented in Fig. 2.7 with the

dashed lines indicating the location of the thermocouples (flow data were acquired in the

plane of the thermocouples). Note the distance between the nozzle exit and the diffuser

inlet in Fig. 2.7. This tunnel dimension imposed the tightest constraint on the design of the

traversing arm and the maximum length of cone traverse in the x-direction. A typical x-

traverse of the cone boundary layer was limited to 7.5 inches. A schematic of the

traversing arm is presented in Fig. 2.8. It was designed to accept the interchangeable hot-

wire probes while minimizing deformation under flow loading. The traversing arm

experienced no problems associated with deformation or other phenomena during the tests.

The coordinate system used in this research is also presented in Fig. 2.7. The x-axis

begins at the cone tip and coincides with the cone axis. The y-axis is normal to the x-axis

and parallel to the tunnel floor. The y-distance is always taken relative to the cone surface

at a specific x-location. The traversing arm was attached to two computer-controlled linear

motion traverses mounted on the ceiling of the tunnel -- one for the x-direction and the

other for the y-direction. These traverses moved 12,700 steps per inch of motion with

errors of :£'0.00039 in.

Throughout this work, the x-direction is the coordinate of interest, whereas in the

LST calculations, "S" or distance along the surface of the cone is used. In Fig. 2.9, the

difference between the two coordinates is presented and at the maximum x-location

(x=18.00 in.) the corresponding S location is S=18.18 in. This 1% difference is negligible

and hence the experimental data can be compared using the x-coordinate.

The curvature of the cone presented some difficulty upon attempts to traverse a

constant y-location over the cone. The software was designed so that constant heights

between the contact sensor and the cone could be investigated. Since the hot wires are not

positioned directly over the contact sensor (see Fig. 2.4), a systematic error exists in the y-

location of the wire as x is varied. In Fig. 2.10, the appropriate correction distance is
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presented so that the true y-location of the hot wire can be determined. Since the traversing

arm is fixed at an angle of 13.1" with respect to the x-axis and the curvature of the cone

increases with x, the y-correction increases with x. The net effect of this systematic error

in y is that a "constant y" traverse actually follows a line of slightly increasing y as x

increases. Unless otherwise noted, all y-values presented are uncorrected and the random

y position error is :£-0.0025 in. which is +1/2 the hot-wire support diameter. This error

represents the uncertainty in centering the wire directly along the center of the supports.

2.5 Data Acquisition System

The fully automated data-acquisition system (driven by a C-program executed on a

486-DX33 PC) is depicted in Fig. 2.11. The C program was designed so that experimental

grids could be traversed over the cone in uniform x- and y-steps. The program controlled

all motions of the traverse in conjunction with the contact switch output. Generally, the

traversing arm moved to the first x location and then moved the hot-wire probe toward the

cone in single step increments. Upon making contact with the cone surface, the traversing

movement stopped and then reversed direction until the first y location was reached. After

a predetermined "wait" time (on the order of milliseconds), the appropriate data were

acquired and stored on the PC. This sequence of moving, waiting, and then acquiring data

was repeated until the grid was covered.

The time-trace data were acquired using a Nicholet Pro 40 digital oscilloscope with

a sampling rate of 2 million points per second and record length of 217 points. The

oscilloscope was used primarily because it had an amplitude resolution of 12 bits; i.e., the

full-scale range is divided into 4,096 bins. Since the amplitude of the unsteady data

increased exponentially with x, a software routine was developed to optimize the amplitude

scale at a suitable level prior to acquiring each time trace. The CVA time-trace data were

first AC-coupled and filtered using a Stanford Research Systems model SR560 low-noise

preamplifier with a low-pass filter setting of 1 MHz, a high-pass filter setting of 100 Hz,
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and a gain of 1. The high-pass setting was selected to help minimize the 60 Hz facility

noise and the low-pass setting was selected based on the Nyquist criteria; i.e., 1/2 the

sampling rate. The roll-off of the Stanford filter was only 6 dB per octave, but other

available filters with higher roll-offs were found to introduce spurious frequencies and

large noise levels when the signal amplitude was small. To help minimize the electrical

noise further, the CVA power supplies were connected to a Topaz Line Noise Suppressing

Ultra-Isolator.

While testing, a LeCroy digital oscilloscope was used to monitor the filtered CVA

output so that hot-wire failure could be readily determined. The LeCroy oscilloscope was

also used as a spectrum analyzer so that the quality of the hot-wire signal could be

evaluated. This was especially useful in making immediate determinations about any

unsteady strain-gaging behavior of the wires. It should be noted that the LeCroy

oscilloscope, while exhibiting a faster sampling rate than the Nicholet model, had only 8-bit

amplitude resolution; i.e., 256 bins, meaning that the quantization error with the Nicholet

oscilloscope was significantly less. Moreover, the Nicholet oscilloscope could store

records 3 times longer than those available using the LeCroy.

To set the voltage across the hot wire, a programmable Hewlett-Packard model

59501B power supply was used. With this device, voltages from 0.01 to 9.99 V could be

selected as the Vrh input to the CVA, with an error of :£'0.01 V. Voltage selection was done

via a function in the main data acquisition program used to set the wire overheat.

A Keithley Model 199 System Digital Multi-Meter/Scanner was used to measure

mean and RMS quantities from the CVA. With this device, "true" RMS measurements

could be made as well as DC-voltage and wire resistance measurements. All data

acquisition instructions via the Keithley were computer-controlled and data were stored on

the PC.

The M6NTC also had a Schlieren system available. To record images of the flow

over the last 3 in. of the cone, a Panasonic Model AG-7300 video cassette recorder was
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usedandcontinuous images were stored on standard videotape. Since most of the cone

was inside the nozzle, these images only show the flow phenomena associated with the end

of the transition zone.

Data from the instrumented cone were also collected. A Hewlett-Packard Model

3852A Data Acquisition and Control Unit (DACU) was used to acquire the voltages from

the cone thermocouples and from the resistance temperature devices used to establish the

reference temperature. Thermocouple voltage data from the DACU were transferred to the

PC, converted to temperatures and stored. There were nine Baratron 10-Torr pressure

transducers used to measure surface pressures on the cone. The voltage data from the

pressure transducers were converted to pressures by an MKS Instruments, Inc. Type 670

Signal Conditioner and the data were recorded directly from the display.

2.6 Measurements

A review of the data acquired during this research is now presented.

The focus of stability experiments is on the frequency components in the unsteady

data, so most data acquired was the AC-coupled output of the CVA. For each time trace

acquired, the necessary quantization parameters were also recorded in a separate file.

These files contained such information as the sampling rate, full-scale range, and the

conversion factor to recover voltages from the binary time-trace data.

In order to determine the location of maximum disturbance energy, the RMS of the

CVA output was recorded as the wire passed through the cone boundary layer. These data

were acquired with the CVA in its constant-voltage mode (V_=5.0V) to minimize test time.

The location of maximum RMS energy is traditionally where unsteady data is acquired in a

stability experiment, due to the large measurable disturbance amplitudes.

Since a traditional total temperature probe would cause too much interference in the

0.040-in. boundary layer over the cooled cone, the unheated hot wire was traversed

through the boundary layer and the mean resistances recorded. In this mode, the hot wire
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respondedonly to mean total temperature and the final resistance indicated the adiabatic

wail temperature of the wire. These resistance data were used to determine the thickness of

the thermal boundary layer and to indentify mean-flow distortion.

A heated wire, on the other hand, responds to changes in total temperature, mass

flow, and overheat. The DC voltage of the CVA output was recorded as the hot wire was

traversed through the boundary layer with the CVA in its constant voltage (V_=5.0V)

mode to minimize test time. These data were also used as a qualitative indication of mean-

flow distortion and as another means of determining boundary-layer thickness.

The wall temperature of the cone was determined from the T-type thermocouples

and is traditionally used as the indicator of boundary-layer transition. Wall smile pressure

data were obtained in the flared region of the cone using 9 of the 30 orifice locations on the

cone surface and are compared herein to the theoretical calculations for the laminar

boundary layer.
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CHAPTER 3

FREESTREAM DISTURBANCES

3.1 Overview of Freestream Disturbance Spectra

One of the unique features of the present research is that the stability of the cone

boundary layer has been investigated in a quiet flow environment. As discussed earlier,

conventional tunnels have turbulent tunnel wall boundary layers which radiate eddy roach-

waves into the freestream. This freestrearn noise impinges on the model boundary layer

and introduces unwanted, transition-promoting disturbances.24, 25 Quiet tunnels are

designed to minimize acoustic radiation and hence allow the model boundary layer to

develop in a manner that more closely resembles that predicted by linear stability theory.

To investigate the freestream flowfield, the region 0.24 in. above the model was

surveyed from x=9 in. to x=16.5 in. at the test flow conditions of To=810"R and Po=130

psia. The cone was cooled for this test to 537"R, the minimum cooling temperature of the

system. However, for this type of test, the wall conditions of the cone were immaterial.

The maximum cone boundary-layer thickness for all tests was 0.050 in.; so, the survey

was at least 4 boundary-layer thicknesses away from the wall. The cone angle over the

straight section of the cone was 5". Hence, inviscid theory predicts a shock 0.64 in. above

the surface of the cone at x=6 in. 99,100 Since the cone shock will not decrease in distance

away from the cone as x increases, it is clear that the survey at y--0.24 in. was between the

cone shock and the cone boundary layer.

For each spectra presented, the 217 data points were divided into 2 8 records and

averaged using an FFT length of 210. Due to the window length in the power spectral
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density (PSD) routine, the frequency amplitudes below 10kHz were suspect and were not

presented. Since the focus of the subject research was on frequencies much greater than

10kHz, this was of little consequence. The units of the amplitudes of the PSD curves are

(volts)2/Hz and all amplitudes presented herein are the square root of this parameter. This

spectra] analysis routine was applied to all the unsteady data herein.

In Fig. 3.1 the freestream spectra are presented at y=0.24 in., x=9 and 16.5 in.

There are two generic features of freestream noise 81 illustrated by the "noisy" flow curve at

x=16.5 in.: 1) the lowest frequencies have the highest amplitude and 2) noise amplitudes

rapidly diminish as the frequency increases. This "noisy" flow curve is typical of the

freest.ream spectra associated with conventional tunnels. The quiet flow curve at x=9 in. is

unique to quiet tunnels operating at this unit Re** and can be produced in conventional

tunnels only when Re** is reduced.

In Figures 3.2 and 3.3, the development of the "noisy" flow is presented in terms

of a series of spectral plots for the x-locations investigated. From Fig. 3.2, there is no

evidence of disturbances in the flow until x=12.5 in., and this "noise" only appears in the

lowest frequencies. Although the flow upstream of x=12.5 in. may contain disturbances,

they could not be detected with the present measuring instruments. In Fig. 3.3, there is an

anomaly in the data in the vicinity of 220kl-Iz and x=15.5 in., but this phenomena was not

found to be repeatable and does not impact the estimation of the quiet region. However,

the general trends of the spectra presented in Figures 3.2 and 3.3 are repeatable.

3.2 Low-Frequency Disturbances

The dominance of low-frequency disturbances in the freestream of the M6NTC is

evident. In Fig. 3.4, disturbance amplitude at selected low frequencies has been plotted as

a function of x, with polynomials fitted to the data points. Since the lower frequencies

have lower noise levels, each data set has been normalized by the value of A o at x=9, the

furthest upstream location. The logarithm of the amplitude ratio is presented in Fig. 3.4
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since the unsteady data in the cone boundary layer is presented in terms of this parameter in

later chapters. It is clear that the maximum disturbance amplitude is associated with the

lowest frequency. As frequency increases, maximum amplitude diminishes, with the

amplitude profile for 100kHz barely rising above zero. The amplitude increase with x was

due to increased radiation intensity as the nozzle wall boundary layer evolved from

transitional to turbulent. The transition zone of the nozzle wall boundary layer is thought to

be characterized by the formation, growth, and breakdown of Gtirtler vortices. 33

For the present research, the most important low-frequency disturbances are at

70kHz which is the most unstable first-mode frequency predicted for the adiabatic cone

case. 14 As seen in Fig. 3.4, the amplitude profile for a frequency of 70 kHz does not

become nonzero until x>14 in. and its amplitude is much less than for the 15kHz case. The

importance of these low-frequency disturbances is that they can potentially enter the cone

boundary layer and trigger the growth of first-mode instabilities.

3.3 High-Frequency Disturbances

The amplitudes of the high-frequency disturbances are presented in Fig. 3.5. The

frequencies presented are the most unstable second-mode frequencies predicted by LST,

and the subharmonics of these modes. The same vertical scale used in Fig. 3.4 is also used

in Fig. 3.5 to emphasize the fact that no high-frequency disturbances in the freestream

increase appreciably above the reference level.

3.4 M6NTC Flow Quality

The M6NTC produced a substantial region of high-quality "quiet" flow over the

cone model. There were no measurable second-mode frequencies in the freestream at

y=0.24 in. above the test cone in the orientation used for testing. There was a first-mode

frequency in the freestream, but it was only measurable for x>14 in. Moreover, there were

no measurable disturbances for x<12.5 in., indicating that the flow over the cone was
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"quiet" up to that point. "Quiet" flow does not necessarily imply "noiseless" ideal flow.

There may have been disturbances in the freestream whose amplitudes were so small as to

escape detection, but the traditional acoustic disturbance levels typical in a conventional

tunnel were absent for x<12.5 in.

In Fig. 2.3, the quiet core determined from the empty tunnel calibration 31 predicted

that disturbances would fhst radiate onto the cone boundary layer at x=13.25 in. which is

slightly downstream of x=12.5 in., as determined from Fig. 3.2. This difference can be

attributed to the fact that the freestream disturbances of Fig. 3.2 were located at least 0.19

in. above the boundary layer. If the trajectory of the disturbance from y--0.24 in. is

considered, the x=13.25 delineation between "quiet" and "noisy" flow was reasonable.

Then, x=12.5 in. is a conservative estimate of the end of the quiet region.

While a significant region of quiet flow was expected, there remained the question

of whether or not the flow disturbances would be measurable in the quiet region. Referring

to Fig. 2.3, the second-mode growth for the adiabatic wall case is N=7 at the location

where measurable freestream disturbances radiate onto the cone boundary layer. Since the

growth of second-mode disturbances in the cooled case is even higher, the potential exists

for measurable disturbances to grow in the cone boundary layer while the boundary layer is

in the quiet core of the M6NTC.
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CHAPTER 4

ADIABATIC-CONE MEASUREMENTS

4.1 Adiabatic-Cone Wall Temperature

One of the simplest ways of identifying the transition zone over a model in high-

speed flow is through the use of temperature data from thermocouples mounted just under

the surface of the model. As the boundary layer undergoes transition, the heat transfer

coefficient increases from its laminar value to a higher turbulent value and thermocouples

mounted directly under the surface of the model indicate the increased heat transfer rate

through an increase in wall temperature. 36

In Fig. 4.1, the wall temperature distribution on the adiabatic cone is presented and

the dramatic increase in wall temperature due to the presence of transitional flow is

apparent. For each test of the adiabatic cone, the model was "pre-heated" with a flow of

high-density, high-temperature air for approximately 1/2 hour. Once the flow conditions

were met (Math 6, Po=130 psia, To=810*R), the cone model was allowed to reach a

repeatable steady-state wall temperature before data were acquired. Due to the extensive

preheating, the "wait" time for this temperature distribution at flow conditions was

minimized (between 10 and 15 minutes). The data in Fig. 4.1 are an average of the wall

temperatures recorded for 18 separate tests conducted on the adiabatic cone. The standard

deviation of the temperature at any wall location was less that 1% for all the adiabatic wall

tests. The coolant passages in the cone model were evacuated for these tests.

A typical transition zone can be identified in Fig. 4.1. The intersection of two lines,

one approximating the slope of the laminar wall temperatures and the other the slope in the



41

hightemperature-gradientregion,givesanindicationof thestartof thetransitionzone.The

end of the transition zone,or "transition point," can be equatedwith the location of

maximumwall temperatureasshown.14 Of course,thetransitionprocessoccursovera

regionandthedefinition of atransition"point" is somewhatarbitrary. In general,thewall

temperaturedata in Fig. 4.1 show that a transition zoneexists over the adiabaticcone

betweenx--12andx=16 in. This is only a roughestimateof theextentof thetransition

zone,but it doesindicatewheretheinitial hot-wiresurveysshouldbeconducted.

4.2 Mean Boundary Layer Over the Adiabatic Cone

To help determine the state of the adiabatic-cone boundary layer, surveys of the

boundary layer were conducted with an unheated hot wire. Since the resistance of the

unheated hot wire increases linearly (as a first approximation) with total temperature, the

resistance of the hot wire was recorded as the wire was surveyed through the boundary

layer. In Fig. 4.2, the resistance profile of the wire, normalized by the value at Y=Ymax, is

presented at x=9 in.. This R w curve has the characteristics of a typical stagnation

temperature profile in a high-speed boundary layer with a "bulge" in T O near the boundary-

layer edge due to frictional heating. 103 Since T O will reach a constant value outside the

boundary layer, the boundary-layer thickness is estimated to be 0.055 in. at x=9 in. Note

that the thinness of the boundary layer precluded the use of a standard T O probe, which

could have caused excessive flow interference due to its size.

All of the normalized R w data are presented in the form of a contour plot in Fig.

4.3. The line defining the value of unity may be considered the edge of the boundary layer

as was shown in Fig. 4.2. This line actually defines the thermal boundary-layer thickness,

since the mean-flow analysis associated with the LST predictions 14 show that the

temperature continues to vary slightly after the velocity has reached the freestream value.

In boundary-layer theory, in general, and in the LST calculations specifically, the velocity

and temperature prof'tles are shown to change slowly with x. Hence, in the R w data
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presented in Fig. 4.3, this slow variation translates into a series of parallel contour lines

with a slight slope between x=9 and 13.5 in. For x>14 in., there is a dramatic change in

the R w prof'fle that suggests a distortion of the mean flow from its laminar state.

A second method of determining boundary-layer thickness and mean-flow

distortion was employed. The heated wire was surveyed through the boundary layer and

the mean response of the CVA was recorded. In this test, the CVA was operated at a

constant wire voltage with Vrh=5.0V tO minimize test time. The mean CVA output voltage

of the heated hot wire, Vs,mean, responds to changes in mean mass flow, mean total

temperature, and overheat. Again, the flow variables, as well as the wire overheat, vary

slowly in x for a given y location, so parallel lines with a slight slope would be expected in

the laminar region. In Fig. 4.4, the mean CVA response to the heated wire, normalized by

the Ymin and Ymax values at each x location, is presented in contour plot form. In this case,

the line defining the normalized value of 0.99 is used as the location of the boundary-layer

edge. As was the case for the unheated hot wire data in Fig. 4.3, the heated hot-wire data

in Fig. 4.4 also show a distortion of the mean flow for x>14 in., as evidenced by the

deviation of the contour data from a family of parallel lines.

The boundary-layer thickness data as defined previously, is compared to the LST

prediction in Fig. 4.5. The general trend of the experimental data matches well with the

numerical prediction for the laminar, adiabatic-cone boundary layer. For x>15 in., the

experimental data is seen to deviate from the laminar prediction. This deviation is expected

as the transitional boundary layer evolves and grows.

The wall pressure data in the transition zone were also recorded for the adiabatic

cone and are presented with the LST predictions in Fig. 4.6. Although the data are sparse,

the overall trend matches well the predicted value and gives further confidence to the

experimental results. It should be noted that the wall pressure data for locations x=13 in.

and x=16 in. are suspect since the wall pressures were still changing (decreasing) even

after 1 hour.
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Upon considering all the mean-flow data presented in Figures 4.1-4.6, the behavior

of the adiabatic cone boundary layer may be deduced. Up to x=15 in., the boundary-layer

thickness stays relatively constant and compares well with the numerical prediction. The

results of the heated and unheated wire survey suggest that the boundary layer begins to

distort significantly at x>14 in., and this is followed by an increase in boundary-layer

thickness at x>15 in. Hence, it may be concluded with reasonable certainty that the

adiabatic cone boundary layer is laminar for x<14 in. and that the mean flow has undergone

a significant distortion by the time the "transition point" has been reached at x=16 in., as

shown in Fig. 4.1.

4.3 Overview of Adiabatic-Cone Disturbances

The disturbances in the adiabatic-cone boundary layer were measured at the location

of maximum disturbance amplitude, as is standard practice in high-speed stability

experiments. 86 To determine the location of maximum disturbance energy, the heated hot

wire (using a constant voltage setting of Vrh=5.0V to minimize test time) was traversed

through the adiabatic-cone boundary layer and a digital multimeter was used to measure the

output of the anemometer in terms of Vs,RM S. In Fig. 4.7, the RMS data at x=9 in. is

presented versus the y distance normalized by the boundary-layer thickness as defined in

Fig. 4.5. The maximum value of Vs,RM S occurs near the boundary-layer edge at

y/_i--0.87, which is typical of second-mode disturbances, as seen in previous high-speed

experiments. 86 The amplitude of the disturbances is seen to diminish rapidly to a constant

"zero" value outside the boundary layer at this x location. Note also that there is a second

maximum at y/8=0.58, but the spectral content of this peak did not differ from the peak at

y/8---0.87. This second peak may result from an increasing hot-wire sensitivity combined

with decreasing disturbance amplitude, as y/8 decreases.

All of the aforementioned RMS data are presented in a contour plot in Fig. 4.8 with

the hot-wire survey path identified. For this plot, the natural logarithm of the RMS values
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was fast taken and then the data were spatially faltered using a low-pass routine to minimize

experimental noise. As shown in Fig. 4.8, the path of the hot wire used to record the

disturbance spectra coincided with the nominal location of maximum RMS energy, to

within the experimental error of +/- 0.002 in. Also observed in Fig. 4.8 is the distortion of

the RMS contours for x>14 in., which coincides with the previously identified region of

mean-flow distortion.

In Figures 4.9, 4.10, and 4.11, the spectral content of the timetrace data acquired at

the location of maximum disturbance energy for the adiabatic cone are presented in an

oblique-view waterfall plot, a front-view waterfall plot, and a contour plot, respectively.

The value of A o used for normalizing each frequency was the value measured at x---9 in.--

the most upstream location. For each timetrace, the hot wire was heated to Rw=l.5

Rw,adiabati c. As shown in the figures, there are three distinct peaks in the spectra centered

about zero, 280, and 560kHz. It should be noted here that the bandwidth of the

anemometer is 400kHz, which implies that the amplitude data for frequencies above

400kHz have been attenuated.

4.4 Second-Mode Disturbances Over the Adiabatic Cone

From the LST calculations, the most unstable disturbance in the adiabatic-cone

boundary layer are second-mode disturbance at 270kHz. There exists a band of unstable

frequencies in the experimental data which include this predicted second mode. In general,

second-mode disturbances are highly tuned to the thickness of the boundary layer, and the

band of unstable second-mode frequencies in Fig. 4.10 is nearly constant since the

boundary-layer thickness in this case is approximately constant prior to transition (see Fig.

4.5). This result greatly simplifies the analysis because there is no shifting of the unstable

frequencies which is typical for a straight cone. 76

To identify individual second-mode frequencies, a segment of a single spectrum is

presented in Fig. 4.12 at x=13 in. It can be seen that there are two dominant second-mode
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frequencies at 275 and 291 kHz, rather than a single dominant frequency. Changing the

parameters of the power spectral density routine to refine the spectrum only made these two

peaks more pronounced. It is known that "natural" second-mode disturbances in a

hypersonic boundary layer occur in wave packets 104 which suggests that the two

frequencies identified in Fig. 4.12 could be indicative of the wave-packet nature of the flow

disturbances in this case.

In Fig. 4.13, the growth of the second-mode disturbances is compared to the LST

predicted growth of 270kHz. As discussed in Sec. 1.4, experimental stability data can be

compared to numerical calculations though Eqn. 1.6a or Eqn. 1.9. An attempt was made to

use the traditional approach whereby a curve was fit to the experimental amplitude data and

Eqn. 1.3a was applied. It was found that a 7th or higher order polynomial was required for

a suitable fit and that in the region of "small" amplitudes near the electronic noise level, the

resulting values of -oq oscillated wildly. Moreover, different curve-fit routines produced

dramatically different spatial growth rates for the small amplitude data. Because of the bias

introduced by the selection of the curve-fit routine, Eqn. 1.9 was used for comparing the

experimental data with the LST predictions.

There are two regions where the experimental amplitudes deviate from the predicted

growth in Fig. 4.13. At the low amplitude end where N=4.8, the noise level of the CVA

defines the smallest disturbance that can be detected. The shift of 10.75 required for the

experimental data to be comparable to the predicted levels implies that the initial amplitude

of the second-mode disturbance could be as little as exp(- 10.75); i.e., 201.tV (RMS) at x=4

in. Clearly, more sensitive experimental methods and/or equipment are required if the

significant region below N=4.8 is to be investigated. As the second-mode disturbances

rise above the noise level, N factors for both frequencies (275 and 291 kHz) are seen to

follow the predicted "linear" growth up to N=9. For x>15 in., the second-mode

disturbances have achieved their maximum growth and have saturated. An underlying

assumption of the LST prediction is that the disturbance amplitude is negligibly small, but
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reality dictates that the disturbances will ultimately reach a finite level that violates this

premise. It is then expected that the unstable disturbances will saturate and that other

"nonlinear" processes such as mean-flow distortion and harmonic generation will appear. 2

Thus, there is a significant "linear" region in the adiabatic cone boundary layer where

second-mode frequencies follow the growth predicted by linear stability theory.

4.5 Second-Mode Harmonics Over the Adiabatic Cone

While the linear growth of second-mode disturbances dominates a significant

portion of the transition zone, the processes that ultimately lead to turbulent flow are

nonlinear and evidence of nonlinearity is present in the adiabatic-cone boundary layer.

Mean flow distortion, an inherently nonlinear event, has already been discussed in Figures

4.3 and 4.4 at x>14 in. More evidence of nonlinearity is the generation of harmonics as

shown in Figures 4.9 to 4.11 by the existence of the frequency band at 560kHz. In other

high-speed experiments, it has been shown that frequencies twice the second-mode

frequency are true harmonics and not just fortuitous spectral anomalies. 105 Hence, the

frequency band at 560kHz is assumed to be a harmonic band related to the second-mode

instabilities.

In Fig. 4.14, the amplitudes of the fundamental second-mode frequencies and their

harmonics are compared. There is a significant region at x<13.5 in. where the fundamental

disturbances are growing linearly and there exists no measurable harmonics. Disturbances

at the harmonic frequencies, which begin growing at x=13.5, cannot be explained by linear

stability theory. In addition, the mere presence of these harmonics suggests the end of the

linear region and the start of the nonlinear region. These harmonics are seen to grow and

saturate at about the same location, x=15 in., where the fundamentals saturate. In

comparing the dimensional growth rates in Fig. 4.15, the reduction in growth rate of the

fundamental mode tends to coincide with the increase in growth rate of its harmonic; i.e.,

the disturbance energy shifts from the saturating fundamental to the growing harmonic.
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However,theharmonicsaturatesquickly andtheonly disturbancegrowthin theboundary

layer, asseenin Fig. 4.11at x>15 in., is ageneralizedspectralbroadeningof the second-

mode frequency band and the low-frequency band centered about 0 kHz.

4.6 Low-Frequency Disturbances Over the Adiabatic Cone

Referring to Figures 4.9, 4.10, and 4.11, there is a third band of growing

frequencies centered at 0 kHz in addition to the second-mode band and the harmonic band.

Upon comparing Fig. 4.16 (the low-frequency disturbances in the boundary layer) and

Fig. 3.4 (freestream noise), it can be seen that the trends are strikingly similar, with the

lowest frequencies having the highest amplitudes. Furthermore, the noise in the freestream

is first measurable at x=12.5 in. (see Fig. 3.2) and the low-frequency band is first

detectable in the boundary layer near this same x-location (see Fig. 4.11).

The growth of the low-frequency band is thought to be closely related to the

increasing freestream noise level. As the nozzle-wall boundary layer of the M6NTC

becomes more strongly turbulent, the amplitude of the freestream noise impinging on the

adiabatic-cone boundary layer increases with x, as evidenced in Fig. 3.4. These freestream

disturbances are internalized and the amplitude of the low-frequency disturbances in the

boundary layer at any given x is related to the history of the freestream noise upstream of

that x location. If the "damping" of disturbances at the low frequencies is less than the

"production" at low frequency energy by the freestream, then the disturbances at these

frequencies will grow. Upon comparing Figures 3.4 and 4.16, it is clear that the

disturbances at the lowest frequencies, 15 and 35 kHz, have grown to levels substantially

higher than the freestream level. In fact, the growth at the lowest frequencies is much

higher than any linear stability prediction and is similar to the second-mode growth in Fig.

4.14. Thus, it is concluded that the growing low-frequency disturbance band is most likely

a result of the increasing freestream noise and henceforth the low-frequency band will be

referred to as the "freestream noise" band.
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Unlike the harmonic band, the growth of the frees_ noise band has no effect on

the linear growth of the fundamental. In Fig. 4.16, the lowest frequencies have measurable

values as far upstream as x--11 in., but the fundamental second-mode disturbances are

growing linearly as predicted by linear stability theory up to x=14 in. This tends to show

that the freestream noise band is not a nonlinear effect of interacting second-mode

frequencies and lends more credence to labeling these disturbances the "freestream noise"

band.

The predicted first-mode frequency of the adiabatic cone is 70kHz and this

frequency is embedded in the freestream noise band. The disturbance growth at 70kHz

shown in Fig. 4.16 is not completely inconsistent with linear theory; however, the

measured growth should not be considered a linear phenomenon because it occurs in a

region of the boundary layer where nonlinear events have already been identified. In

addition, Fig. 4.10 shows that 70kHz is not the center of a distinct fn'st-mode frequency

band. There may well be a growing first-mode disturbance in the adiabatic cone boundary

layer, but its growth is undetectable in the linear region for x<14 in. Hence, the

measurable disturbance at 70kHz is better described in this case as an artifact of the

freestream noise than as a distinct fast mode.

One additional observation concerns the low-frequency disturbances in the adiabatic

boundary layer. From Figures 4.9, 4.10, and 4.11, the spectra at x=9 in. is devoid of any

significantly growing disturbances, but Fig. 4.7 shows that a maximum in disturbances

energy exists near the boundary-layer edge and Fig. 4.8 shows that the disturbance level

increases with x. Recalling that the frequencies below 10kHz could not be resolved, as

explained in Sec.3.1, it can then be concluded that the disturbance energy prof'tle presented

in Fig. 4.7 is due to the presence of sub-10kHz frequencies.
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CHAPTER 5

COOLED-CONE MEASUREMENTS

5.1 Cooled-Cone Wall Temperature

In Fig. 5.1, the measured wall temperature variation of the cooled cone is presented

and regions of large temperature gradients are present near the tip and base of the cone.

Since the tip of the cone is not cooled, this region acts as a heat source that dissipates

energy via conduction into the actively cooled region of the cone. The dissipation of

energy produces a large negative temperature gradient for x < 7 in. At x=7 in., the wall

temperature becomes nominally uniform at 470"R. This uniform cone temperature, which

corresponds to the maximum cooling capability of the cooling system and hence the lowest

possible cone wall temperature, extends to about x=l 1 in. where a positive temperature

gradient begins. There is a peak in the wall temperature at about x=15 in., after which the

temperature falls and finally rises again as the base of the cone is reached. This final rise is

expected because of base conduction effects due to the presence of the relatively hot,

uncooled sting assembly.

To obtain the cooled-cone wall temperature profile displayed in Fig. 5.1, the

average wall temperature data from 22 cooled-wall tests was taken. Special procedures

were developed in order to operate the cooled cone in the M6NTC successfully. During the

preheat period of the tunnel where hot, high density air flowed over the cone, the set point

of the cooling unit was T=25°C (537°R), due to the high thermal loads. The cooler would

fail if the temperature were set any lower during preheat, because it would begin to operate

in a cyclic, rather than a steady mode. If the cyclic mode were allowed, stagnant coolant
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would remainin thecone,absorbheat,andvaporize,renderingthecoolantandthecooling

unit ineffective. Oncethetunnelwasbroughtup to Math 6 operatingconditions,theset

point on thecoolerwasloweredto -15*C(465"R)andwithin 5 to 10minutes,arepeatable

cone temperaturedistribution was achieved. Due to the active control of the cone

temperatureand the minimum preheat time required, the cooled-cone tests were

significantlyshorter than the adiabatic-cone tests.

In Fig. 5.1, a typical transition region is identified using the same method that was

used for the adiabatic cone in Fig. 4.1. Hence, a transition zone over the cooled cone

exists between x=l 1 and x=15 in., which represents an upstream migration of 1 in. relative

to the transition zone of the adiabatic cone. This upstream movement of the transition zone

due to wail cooling is expected, based on the LST predictions for enhanced second-mode

growth.

5.2 Mean Boundary Layer Over the Cooled Cone

As with the adiabatic-cone boundary layer, the cooled cone was surveyed using an

unheated hot wire as an indication of the stagnation temperature distribution through the

boundary layer. In Fig. 5.2, the normalized resistance of the hot wire is plotted at x---9 in.

As with the adiabatic cone, there is a bulge in R w near the boundary-layer edge due to

frictional heating, but the bulge is not as pronounced as in the adiabatic case. This effect,

and the reduced value of R w near the cone wall, is due to the significantly reduced wall

temperatures. Note also that the boundary-layer thickness defined in Fig. 5.2 has been

reduced from 0.055 in. in the adiabatic-wall case to 0.041 in. for the cooled wall.

In Fig. 5.3, a contour plot of R w data is presented and a region of parallel contour

lines can be seen for x<l 2.5 in. As discussed in See. 4.2, this region of approximately

parallel contour lines is expected when the boundary layer is changing slowly; i.e., when it

is laminar. The results of the mean-flow analysis verify that the velocity and temperature

profiles change slowly in the laminar region. 14 For x>12.5 in., it can be seen that the
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contours undergosignificant changesin shapeassociatedwith disturbancegrowth at

harmonicfrequenciesin thenonlinearregionof theadiabatic-coneboundarylayer.

Using a heatedhot wire, the cooled-coneboundarylayer wassurveyedandthe

meanCVA outputwasrecorded.A contourplot of thenormalizeddatais presentedin Fig.

5.4whichconfh'msthattheregionfor x>12.5in. is significantlydifferentin characterthan

theregionfor x<12.5 in. Hence,basedon theresultsof the adiabatic-coneinvestigation,

the datain Fig. 5.3 andFig. 5.4suggestthat theboundarylayer becomesnonlinearasx

increasesbeyond12.5in.

To facilitatecomparisonwith theoreticalpredictions,boundary-layerthicknessdata

from Figures5.3 and5.4,asdefinedin Sec.4.2, areplottedin Fig. 5.5. As wasthecase

for theadiabaticconein Fig. 4.5,thepredictedandmeasuredboundary-layerthicknesses

agreeto within the error of the experimentfor x<13.5 in. For x>13.5 in., the datain

Figures5.3 and5.4show thatthe meanboundarylayer is deformingand theincreasing

boundary-layerthicknessfurthersuggeststhat theboundarylayeris becomingturbulent.

This samesequenceof data; i.e., deforming mean flow followed by an increasing

boundarylayer, wasalsoobservedfor the adiabaticcone. However,cooling hasmoved

transitionupstreamwhile reducingthelaminarboundary-layerthicknessby 25%.

Finally, thewall pressurefor thecooledconeis presentedin Fig. 5.6. As with the

adiabaticcone,thereis goodagreementbetweenthecooled-conedataandthepredictedwall

pressurewheretheboundary-layerthicknessmatchesthelaminarvaluein Fig. 5.5. As x

increasesbeyond14in., it canbeseenthatthewall pressurebeginsto increaseto levels

higher than the laminarpredictions. This increasemay be attributedto the increasing

thicknessof theboundarylayer(seeFig. 5.5),astheboundarylayerbecomesturbulent.

Consideringall themean-flowdata,thebehaviorof thecooled-coneboundarylayer

may be deduced,as was donefor the adiabaticcone. The resultsof the heatedand

unheatedhot-wiresurveyssuggestthattheboundarylayerbeginsto distort for x>13 in.

andthisdistortionis followedby anincreasein boundary-layerthicknessandwall pressure
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starting at x=13.5 in. Hence, it may be deduced with reasonable certainty that the cooled-

cone boundary layer is laminar for x<13 in. and that the mean flow has undergone a

significant distortion by the time the "transition point," as shown in Fig. 5.1, has been

reached (at x=15 in.).

5.3 Overview of Cooled-Cone Disturbances

The profile of disturbance RMS energy level at x--9 in. presented in Fig. 5.7 for the

cooled cone is qualitatively and quantitatively similar to the adiabatic-cone RMS plot at the

same x-location in Fig. 4.7. Again, maximum RMS energy for the cooled cone occurs

near the boundary layer edge at x/5----0.90, indicative of second-mode behavior and the

RMS energy reaches an asymptotic "zero" value in the freestream by yhS=l.2.

The contour plot of all the RMS data for the cooled cone is presented in Fig. 5.8

(including the path of the hot-wire survey used to collect the timetrace data). This figure is

strikingly similar to Fig. 4.8 for the adiabatic cone; i.e., the adiabatic-cone data for x<16.5

in. exhibits nearly identical trends as the cooled-cone data for x<14 in. The LST analysis

(and LST in general) shows that cooling the wall does not diminish the inviscid instability

mechanism 14 and the similarity of the RMS data for the adiabatic and cooled walls appear

to confirm this prediction. Also, the distortion in the cooled cone case of the RMS trends

for x>12.5 in. coincides with the distortion of the mean flow data. Especially noteworthy

in Fig. 5.8 is the -2.5 contour near x-16.5 in., since it represents an increasingly uniform

distribution of disturbances throughout the boundary layer, as would be expected in a

turbulent flow.

In Figures 5.9, 5.10 and 5.11, the spectral content of the timetrace data is presented

in an oblique-view waterfall plot, a front-view waterfall plot, and a contour plot,

respectively. As was the case for the adiabatic cone, there are three distinct peaks in the

cooled cone spectra that are associated with freestream noise, the second mode and the

second-mode harmonic. At the most downstream position in these spectra plots, the nearly
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complete evolution to a turbulent boundary layer is evident; hence, these are the fit'st data

that document the evolution of linear disturbances into a nearly turbulent flow in a quiet

hypersonic flow.

5.4 Second-Mode Disturbances Over the Cooled Cone

From the LST calculations, the most unstable frequency in the cooled-cone

boundary layer are second-mode disturbances at 31OkHz. There is a band of frequencies

with growing disturbances in the experimental data which contains this frequency. As was

the case for the adiabatic cone, the cooled-cone boundary layer thickness remained roughly

constant in Fig. 5.5 for x<13.5 in., and as a result, there is no noticeable shifting of the

second-mode frequencies (see Fig. 5.10).

To identify the frequencies associated with the wave packets in the cooled-cone

case, the disturbance spectrum at x=12 in. is presented in Fig. 5.12. The wave packets

appear to be composed of three main frequencies -- 291,306, and 320 kHz. Note that

291kHz was one of the frequencies associated with the adiabatic-wall wave packets (see

Fig. 4.12) and is a contributor to the cooled-cone wave packets as well. However, the

dominant frequency in the cooled cone case is clearly 306 kHz.

A comparison of the growth of the disturbance at 306kHz with the predicted growth

of disturbances at 310kHz in Fig. 5.13 shows that there is a region where the two compare

very well. At the low end, near N=6.8, the electronic noise level of the CVA prevents

further disturbance detection upstream of x=10 in., and at N=I 1 (x=13 in.) the second-

mode disturbances have saturated. This saturation point at N=I 1 for the cooled cone is

higher than the saturation point at N--9 for the adiabatic-wall case; however, both saturation

N-factors are consistent with linear boundary-layer transition predictions. 5 One possible

explanation for the difference in N-factor growth is that the initial disturbance in the cooled-

cone boundary layer enters (or develops) at a later point; e.g., where N~2, such that the

saturation N-factor could be scaled back to the adiabatic cone level of N=9. The
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internalization and generation of disturbances in the hypersonic boundary layer is best

addressed by "receptivity" experiments that can help explain this difference in N-factor, but

these types of tests require equipment much more sensitive than was used in the present

experiments.

The growth of disturbances at the other wave-packet frequencies is illustrated in

Fig. 5.14, which shows that there is a region where these disturbances grow near the rate

of those at the dominant wave-packet frequency. Hence, as was the case for the adiabatic

cone, the cooled-cone second-mode disturbances grow as a set of discrete wave-packet

frequencies that generally follow the growth predicted for the most unstable second-mode

frequency using I.ST.

5.5 Second-Mode Harmonics Over the Cooled Cone

The frequency band that exists in Figures 5.9, 5.10, and 5.11 at double the second-

mode frequency is considered to be the harmonic band of the second mode, as was the case

for the adiabatic cone. In Fig. 5.15, the growth of the dominant second mode disturbances

at 306kHz and the harmonic are compared and are seen to match the growth trends already

discussed for the adiabatic-cone case in Figures 4.14 and 4.15. For x>13 in., the

harmonic has grown to its maximum amplitude and has saturated, along with the

fundamental. This location (x=13 in.) compares well with the location where the mean-

flow contours in Figures 5.3 and 5.4 and the RMS contours in Fig. 5.8 begin to distort.

Since mean-flow distortion and harmonic generation axe characteristics of nonlinearity, it

can be concluded that the flow over the cooled cone has become nonlinear for x>13 in.

This onset of nonlinearity in the cooled-cone boundary layer occurs approximately one inch

upstream of its occurrence in the adiabatic-cone boundary layer.
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5.6 Low-Frequency Disturbances Over the Cooled Cone

The third band of growing disturbances was previously termed the "freestream

noise" band due to its likely freestream source in the adiabatic-cone case and will be

designated similarly in the cooled-cone case. Comparing Figures 5.16, 4.16, and 3.4, the

amplitude trends are similar, except that the low frequencies in the cooled-cone case have

another region of growth for x>15 in. Amplitudes at the lowest frequencies, 15 and 35

kHz, in both the cooled-wall and adiabatic-wall boundary layers appear to reach a

saturation level which occurs at or near the onset of the nonlinear region in each case. In

addition, disturbances growth at the lowest frequencies is greater in the cooled-cone case

than the adiabatic-cone case. This suggests that the internalization of freestream noise

frequencies by the boundary layer could be related to the growth of the fundamental

disturbances. Since the cone model has a flared geometry, there is always the concern that

the low-frequency disturbances were caused by the development of Gtirtler vortices.

Regardless of the source of the low-frequency band, the second-mode disturbances in the

cooled-cone boundary layer grow linearly; i.e., independently, as they did in the adiabatic-

cone boundary layer.

First-mode disturbances are damped by wall cooling, as predicted by linear stability

theory, and there is a distinct, slowly-growing, 50kHz disturbance peak in the linear region

(x<13 in.) of the cooled-cone boundary layer. This disturbance is easily seen in the

contour plot of Fig. 5.11 and its amplitude is compared with second-mode amplitude data

in Fig. 5.17. It should be noted that there was no distinct first mode in the adiabatic-wall

case and so the 50kHz disturbance in the cooled-cone case is somewhat unexpected. LST

calculations predict that 70kHz is the most unstable first-mode frequency for the adiabatic-

wall case, and the analysis of another cone with a similar flared geometryl 1 suggests that a

frequency of 50kHz for the fast mode is reasonable for the cooled-wall case. Comparing

the growth of the first and second modes in Fig. 5.17 between x=10 and 13 in., the second
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mode is seen to grow four times as fast (on a logarithmic scale) as the first mode, as

expected.

The growth region at x>15 in. in Fig. 5.16 occurs in a nonlinear region and cannot

be explained by linear theory. Referring to Fig. 5.11, it can be seen that between x=13 and

15.5 in., the only "growth" indicated by the hot wire is a generalized spectral broadening of

the disturbance bands, as was the case for the adiabatic cone for x>14 in. (Fig. 4.11).

Beyond x=15.5 in., the spectra fills with measurable disturbance frequencies between the

three dominant peaks. So the growth of frequencies beyond x=15.5 in. is not limited to

low frequencies. Note that disturbances at 153kHz (the subharmonic of the second mode)

show no growth until x>15.5 in., and there is no distinct band of frequencies associated

with the subharmonic (see Fig. 5.11).

5.7 Disturbance Growth in the Nonlinear Region

The rapid, generalized broadening of the spectrum in the region for x>15.5 in. was

found to be accompanied by a rapidly growing unknown disturbance near 800kHz, as seen

in Figures 5.18 and 5.19. This disturbance is not an integer multiple of the dominant

second-mode disturbance, so it cannot be considered another harmonic of the fundamental.

If the spectral broadening is considered the final breakdown of the fundamental

disturbance, then this growing unknown disturbance could be destructively interacting with

the fundamental structure to generate the turbulent frequency pattern that is clearly

evolving. Attempts to repeat the results found for x>15.5 in. for the cooled cone were

mostly unsuccessful due to the large dynamic loads in this nearly turbulent region that

readily broke the hot-wire sensors. By contrast, results in the linear region were easily

repeatable for both the cooled-cone and the adiabatic-cone cases. Thus, due to spectral

broadening, the region for x>15.5 in. is considered the "breakdown" region of the flow in

the cooled-cone boundary layer. As was the situation as in another hypersonic
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experiment, 104 the second-mode disturbances in this experiment retains its character well

into the breakdown region.

A comparison of the spectrum at x=16.5 in. in Fig. 5.18 with the last spectrum in

Fig. 5.10 shows that the spectral data in Fig. 5.18 appears much smoother than the spectral

data in Fig. 5.10. This apparent conflict is due to the division of the amplitudes, A, by the

amplitudes at x=9 in. In other words, the "roughness" of the spectrum between 100 and

250 kHz in Fig. 5.10 is a result of the noise at the furthest upstream location and should

not be considered the result of other disturbance modes.

It must be noted that the disturbance at 800kHz is twice the bandwidth of the CVA,

so the amplitudes of the disturbances at 800kHz have been greatly attenuated. There does

not appear to be a valid electronic explanation for the well-defined, exponentially growing

disturbance band at 800kHz, so the disturbances were considered a fluid dynamic

phenomenon. At the very least, the existence of a growing disturbance at 800kHz in this

experiment highlights the need for high-bandwidth instrumentation to investigate the

nonlinear and breakdown regions of hypersonic boundary layers. Moreover, the need for

even higher sensitivity equipment to measure smaller amplitude disturbances (see Figures

4.13 and 5.13) defines the instrumentation requirements for future hypersonic stability

investigations in the linear region.
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CHAPTER 6

EXPERIMENTAL SENSITIVITIES

6.1 CVA Operation Mode

The normal response of a hot-wire sensor in a high-speed flow depends primarily

on mean mass flow, mean total temperature, and overheat ratio. In this experiment, all

spectral data were acquired using a constant overheat ratio of 1.5, meaning that the

unsteady output was dependent upon variations in mean-flow quantities only and that

overheat variations were eliminated. The CVA may be operated in its normal mode

whereby overheat is neglected and the voltage is held constant; however, the overheat of

the wire drifts with variations in the recovery temperature.

To investigate the sensitivity of the results to the CVA operation mode, the

boundary layer of the adiabatic cone was surveyed with a constant wire voltage, Vw, set on

the CVA and the results are compared with constant overheat (OH) data in Fig. 6.1. In the

constant voltage case with Vrh=5.0V, the overheat of the wire drifted from about 1.45 at

the most upstream location, to 1.35 at the most downstream location. As seen in Fig. 6.1,

the fundamental second-mode disturbance (275kHz) has a slightly higher amplitude as it

grows linearly in the constant overheat case and the harmonic (550kHz) is also slightly

larger; however, the trends of the two data sets are similar and selecting a higher wire

voltage would probably close the amplitude gap. The hot-wire sensitivity varied with the

mean flow as the surveys were conducted, but the exponential growth of the flow

disturbances overshadowed these small, by comparison, variations in both cases. Thus,

due to the exponential growth of the disturbances, the experimental results are generally
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insensitive to the operating mode of the CVA as long as a "reasonable" operating wire

voltage or overheat is selected.

6.2 Wall Cooling

The lowest wall temperature achieved with the present experimental apparatus was

470"R, which is higher than the 420"R wall temperature used in the LST calculations. To

investigate how this variation in temperature impacts the experimental results, the cone was

cooled at the minimum rate possible with the cooling system (defined by the boiling point

of the cooling fluid) and this wall temperature distribution is presented in Fig. 6.2. In this

figure, the wall temperature in the uniform temperature region was 540"R, which is

significantly higher than the 470°R used in the experiment.

Using LST trends and the results of Chapter 5 as a guide, an increase in boundary-

layer thickness, a reduction in second-mode frequencies, and a reduction in growth rate

would be expected at this higher wall temperature compared to the cooled-wall case.

Examination of the normalized wire resistance data of Fig. 6.3 indicates that the boundary-

layer thickness, increased by 0.003 in. from the cooled-wall case in Fig. 5.3, but is still

0.011 in. below the adiabatic-wall case shown in Fig. 4.3. This increase in boundary-layer

thickness should alter the second mode by decreasing the most unstable frequencies due to

the boundary-layer tuning effect of the second mode. In Fig. 6.4 the dominant wave-

packet frequencies associated with the second mode are presented and can be compared to

the frequencies in Fig. 5.12 for the cooled-wall case. For a wall temperature of 470°R, the

second-mode wave packet has characteristic frequencies of 291, 306, and 320 kHz.

However, when the wall is warmed to 540°R the contribution from 320kHz essentially

disappears and the wave packet is composed primarily of disturbances at 291 and 306 kHz.

In both cases, however, the dominant frequency is 306kHz and the growth of disturbances

at this frequency and their harmonics are compared in Fig. 6.5. The main effect of
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wanning the wall is to reduce the growth rate of the fundamental mode slightly and to delay

its saturation point and the accompanying generation of harmonics by roughly 0.5 in.

Since the growth rate and saturation point of the fundamental mode decreases

slightly, the evolution of the transition process should be slowed in the case with minimum

wall temperature of 540"R relative to the 470"R case. In Fig. 6.6, the contour plot of the

disturbance spectra near the location of maximum RMS energy for the wall temperature of

540"R is presented. Compared to Fig. 5.11, it is clear that the boundary layer in the 540"R

wall temperature case has only begun to enter the breakdown region at x=16.25 in., while

the flow in the cooler-wall case enters the breakdown region further upstream at 15.5 in.

In summary, the trends documented in Figures 6.3 to 6.6 for the wall temperature

of 540"R fall between the trends for the adiabatic wall and for a wall temperature of 470°R,

but are much closer to the 470"R trends. It can be expected that there may have been a

slight increase in growth rate and an increase in the amplitude of the wave-packet frequency

at 320kHz had the 420"R wall temperature been achieved. The experimental data is

sensitive to changes in wall temperature, as expected, but sensitivity is relatively low for

the cooled-wall temperatures investigated and thus the experimental data in Chapter 5

corresponding to a wall temperature of 470"R may be readily compared to the 420"R LST

predictions.

6.3 Angle-of-Attack

Orienting the cone at zero angle-of-attack (A-O-A) with respect to the tunnel flow

was done using simple mechanical measurements of the cone axis with respect to the axis

of the nozzle. The error in this method is :t0.1" in yaw and A-O-A. To investigate the

sensitivity of the experimental results to cone orientation, the cone model was rotated by

0.32" in the x-y plane so that the thermocouples and boundary-layer survey path were on

the windward side and the pressure orifices were on the leeward side.
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In Figures 6.7, 6.8, and 6.9, the effect of this aforementioned A-O-A variation on

the mean flow are presented for the cone model under adiabatic-wall conditions. Since the

pressure ports were on the leeward side, the compression of the flow on that side was

reduced and a reduction in wall pressure was expected. In Fig. 6.7, the wall pressure on

the leeward side has been reduced relative to the adiabatic-cone case (at zero A-O-A)

showing that the new orientation had a measurable effect. This A-O-A effect has also

altered the temperature of the cone wall on the windward side, as shown in Fig. 6.8, by

reducing the amplitude and location of maximum wall temperature. The downstream

movement of the maximum wall temperature point by about 0.5 in., as shown in Fig. 6.8,

suggests that transition of the boundary layer has moved downstream on the windward

side. This trend in transition point is consistent with other experimental trends. 106

According to the LST results, the introduction of a flare on the straight cone model

compressed the flow and reduced the boundary-layer thickness. Increasing the A-O-A

slightly also compressed the flow on the windward side, producing a reduction in

boundary-layer thickness. The normalized R w contour plot (Fig. 6.9) shows that the

boundary-layer thickness has been reduced by 0.004 in. relative to the adiabatic-cone case

of Fig. 4.3. Thus, the mean effect of the 0.32* increase in A-O-A was to increase wall

pressure on the leeward side and to reduce boundary-layer thickness and delay transition on

the windward side.

Since the second mode is highly tuned to the thickness of the boundary layer, the

reduction in boundary-layer thickness in Fig. 6.9 resulted in an increase in second-mode

frequencies, as shown in Fig. 6.10. Recalling that the second-mode wave packet was

composed primarily of disturbances at 275 and 291 kHz for the zero A-O-A case, it is clear

that the wave-packet frequencies have increased substantially to 299 and 311 kHz for the

0.32" A-O-A case. With a reduction in boundary-layer thickness of about 7%, it is

significant to note that the dominant second-mode frequencies have increased by about 7%

as well. This is an excellent example of the tuning of the second mode to the thickness of
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theboundarylayerfor a given wall condition. It should be noted that if care was not taken

in orienting the cone relative to the mean flow, the dominant frequencies could shift to

levels as high as those due to the wail cooling. Moreover, the similarity in transition trends

(see Fig. 6.8) could easily have led to the false conclusion that linear stability theories

predicted the "wrong" second-mode frequency when a slight A-O-A existed. Thus, the

frequencies of the second mode are highly sensitive to slight A-O-A variations due to the

boundary-layer tuning effect, but the care taken to achieve zero A-O-A in this experiment

was sufficient to ensure the validity of the experimental results to within the :£-0.1"

orientation error quoted.
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CHAPTER 7

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

7.1 Summary

7.1.1 Hypersonic Transition

Prior to this experiment, few, if any, experimental data sets existed that documented

the evolution of linear disturbances into turbulent flow in the hypersonic flow regime.

Most often, a set of linear amplitude data were acquired at one Reynolds number, then the

Re was increased, along with the freestream noise level, and a set of nonlinear amplitude

data was acquired. In this experiment, for the cooled-wall test of Chapter 5, a unique set of

continuous spectral data was acquired that shows linear disturbances being distinguishable

from the electronic noise, saturating, and finally breaking down into a nearly turbulent

flow. In terms of disturbance growth and mean-flow distortion, the adiabatic-wall data

may be considered a subset of the cooled-waU data.

Referring to Fig. 7.1, the linear region of the transition zone in the hypersonic

boundary layer over the cooled cone can be readily identified. Up to x=13 in., the primary

instabilities grow linearly; that is, the boundary layer allows first- (50kHz) and second-

mode (306kHz) disturbance waves to grow independently and at exponential rates. The

low frequencies are also seen to grow independently in this region and do not interfere with

the development of the primary instabilities. Based on LST predictions, the boundary layer

is unstable to disturbances at second-mode frequencies starting at x-4. However, due to

the limitations of modem sensing equipment, there are no detectable disturbances until

x>10 in. in the linear region.
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The linear region ends as x=13 in. is approached and the primary instability waves

associated with the rapidly growing second mode saturate. The flow then enters the

nonlinear region and its initiation can be defined by the mere existence of second-mode

harmonics which cannot be explained by linear stability theory. Harmonic generation is a

classical indication that vortices are evolving, as shown by the author in rotating disk

flow. 107 In view of this vortex generation process, the distortion of the contours in

Figures 5.3 and 5.4, as x increases beyond 13 in., can be attributed to the large-scale

swirling motion of the vortices. It should be noted that these harmonics grow quickly and

saturate at about the same location where the primary instability waves saturate. Also, the

low-frequency disturbances tend to saturate along with the second-mode disturbances and it

is unclear why this occurs.

In the nonlinear region, secondary instabilities generally develop that cause two-

dimensional disturbances to become three-dimensional; however, secondary instabilities

and nonlinear breakdown are "completely open questions" in high-speed flows. 86 The

distortion of the mean flow by the f'mite-amplitude primary instabilities in the nonlinear

region renders the flow more unstable to inviscid instabilities. One recent theory, 108 based

on a numerical investigation using the DNS approach, shows that oblique, f'mite-amplitude

subharmonic instabilities can interact with second-mode instabilities and spawn other

disturbances that will ultimately lead to a full turbulent spectrum of disturbances. In the

cooled-cone data, there are no detectable subharmonic disturbances in the nonlinear region,

so this potential transition mechanism does not seem a viable explanation in this case. The

only growth in the nonlinear region is a generalized spectral broadening of the dominant

frequency bands that evolved from the linear region. Due to its orientation with respect to

the axisymmetric flow, the hot-wire sensor can only detect streamwise flow disturbances

and is incapable of detecting possible azimuthal disturbances. Hence, the peculiar absence

of a distinct and growing frequency band in the spectra taken in the nonlinear region

suggests that the secondary instability may not have a significant streamwise component.
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The authorspeculatesthatthe spectralbroadening in thenonlinearregionmay be due toa

developing azimuthalmode secondary instabilitywhich may be distortingthe developing

vorticesintoa patternsimilarto theK-type breakdown of A-vorticesinthe flow over a fiat

plate.6 Although the distortionof the vorticescould follow C-type or H-type patterns,

streamwise variationswould be presentinthespectrainthe form of growing subharmonic

frequency bands, but there isno evidence of this. The highly speculativeazimuthal

vorticitypatternthatdevelops is also shown in Fig. 7.1. At the end of the nonlinear

region,theflow disturbancesarethoughttobe a seriesofthree-dimensionalvortices.

After the nonlinearregion,the "breakdown region"isidentifiedinFig.7.I where

the spectrarapidlyfallsand a turbulentflow evolves. As the finiteprimary disturbances

distortedthe mean laminar flow and reduce itsstability,the finitesecondary disturbances

distortthe flow even furtherand reduceitsstabilitytootheropportunisticinstabilitymodes.

In Fig.5.18 a rapidlygrowing unknown flow disturbancewas identifiedat 800kHz that

grew as thespectrawas falling.This coincidenceleadsthe authorto furtherspeculatethat

the 800kHz disturbancecould be a tertiaryinstabilitythatinteractswith the distorted

vorticesand ultimatelyleadstovortex breakdown. Unlike the possibleazimuthal mode,

thispossible tertiarymode isdetectablewith the hot-wire sensor meaning thatithas a

streamwisc component. Although a true"fullyturbulent"flow was not documented in this

experiment,thetrendtoward a turbulentflow atx=16.5 in.isunmistakable (seeFig.5.9).

To summarize, distinctregions in the transitionzone of a hypersonic boundary

layerover a cooled cone have been identified.The linearregionisratherlarge(about8 in.

in this case) but the "infinitesimal" amplitude of the disturbances prevents investigation of

over half this region. The nonlinear region is small by comparison, about 2.5 in., and the

hypothesized azimuthal secondary instability mode cannot be directly detected with the hot

wire. It is significant to note that the peaks in cone wall temperature as documented in this

experiment tended to occur near the end of the nonlinear region where the boundary layer

vortices should have reached their maximum development just prior to breakdown. The
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final stagein thetransitionzoneis thebreakdownregion,andthestreamwisecomponentof

a possibletertiary instability hasbeenidentified in this experiment. The extentof the

breakdownregionhasnotbeendetermined.

7.1.2 Linear Stability Theory

Reconciling LST predictions and the results of high-speed stability/transition tests

in the past were gready complicated by the transition-promoting effects of acoustic radiation

from turbulent wind tunnel walls. In Fig. 7.2, the adiabatic-cone wall temperature is

presented with the bleed valves of the M6NTC closed to allow fully turbulent flow on the

nozzle wall and thereby create a high-amplitude freestream noise field. Using the location

of maximum wall temperature as a guide, the "transition" of the cone moves upstream to

x=l 1.5 in. where N=5.5 (see Fig. 4.13) under this "noisy" flow condition. This transition

N-factor is comparable to that found in a conventional tunnel. 19 In the quiet tunnel with the

bleed valves open and the freestream noise field as presented in Chapter 3, the transition

point moves to x=16 in., as seen in Fig. 4.1, where N=10.5. So by changing the flow

over the nozzle walls from turbulent to laminar, the transition N-factor can be nearly

doubled. This example illustrates the fact that boundary-layer transition depends heavily on

the freestream noise level and highlights the difficulty previous researchers have had in

trying to reconcile low N-factor "noisy" transition data with the usual transition N-factor of

9to 11.

To show the validity of applying LST to predict high-speed flow transition, Fig.

7.3 is presented which compares experimental data from the quiet tunnel with LST

predictions. In this figure, the adiabatic-cone results of Fig. 4.13, the cooled-cone results

of Fig. 5.13, and another adiabatic-wall data set for cone 93-10 are compared with their

respective theoretical growth predictions. The 93-10 cone was investigated on the f'mal day

of testing in the M6NTC since LST predictions were known for this cone geometryl4 as

well as the 91-6 cone geometry. As shown, the primary instabilities in the 91-6 and 93-10
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cone boundary layers under adiabatic-wall conditions both saturate at N=9. Under the

cooled-wall conditions, the 91-6 cone boundary layer saturates at N=I 1. These N values

compare favorably with the N=10 factor that can be used in subsonic, transonic, and

supersonic transition under low freestream noise conditions. 5 To facilitate future

comparisons, the dimensional growth rates of the experimental data in Fig. 7.3 arc shown

in Fig. 7.4 with third-order polynomials fit to the data. Hence, the results of this

experiment show the ability of LST to "predict" the transition of hypersonic boundary

layers using the usual N=10 guideline in a low-noise environment.

7.1.3 Quiet Tunnels

Quiet tunnels were developed so that the growth of disturbances in a high-speed

boundary layer under low freestream noise conditions could be investigated. As explained

in the previous section, use of the quiet tunnel has facilitated the confirmation of LST as an

inexpensive transition-prediction tool using the same N=10 guideline in high-speed flows

as is used in other flow regimes. Moreover, since the cooled-wall trends match the

predicted trends; e.g., transition moves upstream with wall cooling, this quiet tunnel

experiment has confirmed the trends StetsonS0 recently documented for a cooled-wall and

has shown that previous hypersonic transition experiments35 showing contrary transition

trends were somehow compromised.

The use of a quiet tunnel has also raised fundamental questions related to the

receptivity of high-speed boundary layers due to the nature of the second-mode wave

packets. Receptivity refers to the mechanisms in the boundary layer that internalize

environmental disturbances and generate unstable waves.5 In Chapter 3, it was shown that

there are no detectable second-mode frequencies in the freestream above the cone boundary

layers, yet an interesting set of second-mode frequencies exist in the boundary layers. In

this experiment, the primary instabilities were seen to grow as weU-def'med wave packets

composed of two or three discrete frequencies from the set of 275, 291,306, and 320 kHz



91

depending on wall conditions. These frequencies could be considered higher harmonics of

a relatively low 14.55 kHz frequency which is detectable in the freestream near the location

where the second-mode disturbances are fu'st measurable in the boundary layer. The well-

defined wave-packet frequencies identified in this experiment using the quiet tunnel have

not been reported in experiments using conventional tunnels, although wave-packet

features have. 104 Changing the A-O-A slightly in this experiment changed the orientation

of the cone boundary layer to the noise field, resulting in a wave packet with frequencies of

299 and 311 kHz, which could be harmonics of 11.96 kHz, not 14.55 kHz. If the discrete

frequency composition of the wave packets were due to a systematic experimental error,

then the fundamental harmonic frequency should have been maintained. To investigate the

low-frequency source that could be generating harmonics into the second-mode frequency

range, the low-frequency bands associated with the spectral data in Fig. 6.10 are shown in

Fig. 7.5. Comparing the low frequencies, it is clear that the two curves have different roll-

off frequencies that appear to be related the aforementioned "fundamental" of the second-

mode wave-packet frequencies (14.55 kHz for zero A-O-A and 11.96 kHz for the 0.32* A-

O-A). The possible harmonic relationship between low-frequency freestream disturbances

and the clearly defined second-mode wave-packet frequencies in this experiment is unclear

but could be the result of an unknown receptivity mechanism unique to high-speed

boundary layers.

There is another noteworthy issue related to low-frequency disturbances in the

boundary layers growing under quiet conditions. In most high-speed experiments

conducted in conventional tunnels, the freestream noise field is roughly constant, which

results in a saturated low frequency band in the spectra. 76 However, in this experiment,

the amplitude of the freestream noise increases with downstream distance. In Fig. 7.6,

disturbance growth for the lowest frequency investigated (15kHz) is presented in the

cooled-wall and adiabatic-wall cone boundary layers and in the freestream. As shown, the

boundary layers both show 15 kHz amplitude levels that are higher than the freestream
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level for aH x, meaning that these disturbances are being internalized at a rate greater than

the damping rate for this frequency. However, the cooled wall amplitudes are everywhere

higher than the adiabatic wall amplitudes which suggests that the thinner cooled-wall

boundary layer with faster growing disturbances is more "receptive" to the free.stream noise

than is the adiabatic-wail boundary layer. Since the geometry of the cone model includes a

flare, there is the possibility that the growth of the lowest frequencies could be related to the

growth of G6rtler vortices. However, ff this were the case, then the GOrtler instabilities

were growing near the rate of the second mode, and this is highly unlikely. Hence, the

developing noise field in the quiet tunnel shows that low-frequency disturbances grow

faster in the cooled-wall case than in the adiabatic-wall case.

To summarize, the quiet tunnel has provided a low-disturbance environment

whereby the author was able to verify the validity of LST and its transition prediction

capability, but the use of the quiet tunnel has also raised interesting issues related to the

receptivity of high-speed boundary layers. For instance, (1) it is still unclear ff and how

low-frequency freestream noise evolves into high-frequency second-mode disturbances and

(2) the faster growth of low frequencies in the cooled-wall case can not be readily

explained.

7.2 Conclusions

The stability of the hypersonic boundary layer over a flared cone under adiabatic

and cooled wall conditions has been investigated with Re, =2.85x106/ft. in a quiet flow.

Following axe the significant conclusions related to this experiment:

1) The freestream above the boundary layer was found to be "quiet" up to x=12.5 in.

2) The development of the freestream noise field followed typical trends with the lowest

frequencies having the highest amplitudes and nowhere was there a measurable second-

mode frequency in the freestream.
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3) In the linear region, the wall pressure and boundary-layer thicknesses in the adiabatic-

and cooled-wall cases compared well with the LST predictions.

4) In the adiabatic- and cooled-wall cases, the second-mode disturbances were found to be

composed of well-defined wave-packet frequencies.

5) In the adiabatic-wall case, the second-mode wave-packet frequencies were 275 and 291

kHz and grew, following the 270 kHz trend predicted by LST, up to N=9.

6) In the cooled-wall case, the second-mode wave-packet frequencies were 291,306, and

320 kHz. Disturbances at the dominant frequency of 306 kHz grew, following the

trend for 310 kHz predicted by LST, up to N=I 1.

7) The "transition" of the linear disturbances at N=9 and N=I 1 showed that the N=10 LST

transition-prediction guideline applies to hypersonic flows under low freestream noise

conditions.

8) In the nonlinear region, harmonics of the second mode saturated and it was speculated

that azimuthal secondary instabilities could be growing and distorting the developing

vortices.

9) In the cooled-wall case, a breakdown region was identified as well as a possible tertiary

instability with a streamwise component at 800 kHz.

10) The low frequencies associated with freestream noise grew more rapidly in the cooled-

wall case than in the adiabatic-waU case.

11) There was a slow-growing first mode at 50kHz found in the cooled-wall case, but no

distinct first mode was found in the adiabatic-wall case.

12) A peak in cone wall temperature was seen to occur near the end of the nonlinear region

where the vortices were expected to have achieved maximum development just prior to

breakdown.

13) The boundary-layer flow was shown to be very sensitive to angle-of-attack variations

with the second-mode wave-packet frequencies tuning to the boundary-layer thickness.
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7.3 Recommendations for Future Research

From an engineering perspective, this experiment has proven the validity of

applying LST and the N=IO transition criterion to hypersonic flows. In regards to the

details of transition in hypersonic flows, it is recommended that the development of the

potential azimuthal mode secondary instabilities in the nonlinear region be a focus of future

research. An experiment to study this phenomenon would be much more complicated than

the present experiment due to the required use of multiple hot-wires to capture the

developing three-dimensionality of the flow. The extent of the breakdown region should

also be defined in future work and potential tertiary instabilities should be investigated;

however, the hot-wire sensing material and/or wire diameter will need to be changed to

withstand the increased dynamic loads.

Quiet tunnels and their unique low-disturbance freestreams are highly recommended

for certain types of high-speed experiments. Receptivity is still an open issue in

experimental hypersonic flows and the only facilities recommended for these sensitive

studies are quiet tunnels. In this experiment the initial disturbances were "natural," but if

other experiments are to be conducted to investigate the stability of hypersonic flow to low-

amplitude, controlled disturbances; e.g., spark-induced oblique waves, the most suitable

facility for such an experiment is the quiet tunnel.

The prototype constant-voltage anemometer has proven to be a useful tool in

investigating the hypersonic flow in a facility with an intense electronic noise field that has

limited the usefulness of other anemometers. It is highly recommended that CVA

development continue with the goals of producing an instrument with even higher

bandwidth and sensitivity. CVA is recommended to be the "fu'st choice" anemometer for

future high-speed stability or receptivity investigations.
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